11 research outputs found

    Die Bestimmung des Verdampfungsgleichgewichtes aus dem Gesamtdruck (Bin�re Azeotrope; Tern�re Gemische)

    No full text

    Role of Hck in the Pathogenesis of Encephalomyocarditis Virus-Induced Diabetes in Mice

    No full text
    Soluble mediators such as interleukin-1β, tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS) produced from activated macrophages play an important role in the destruction of pancreatic β cells in mice infected with a low dose of the D variant of encephalomyocarditis (EMC-D) virus. The tyrosine kinase signaling pathway was shown to be involved in EMC-D virus-induced activation of macrophages. This investigation was initiated to determine whether the Src family of kinases plays a role in the activation of macrophages, subsequently resulting in the destruction of β cells, in mice infected with a low dose of EMC-D virus. We examined the activation of p59/p56(Hck), p55(Fgr), and p56/p53(Lyn) in macrophages from DBA/2 mice infected with the virus. We found that p59/p56(Hck) showed a marked increase in both autophosphorylation and kinase activity at 48 h after infection, whereas p55(Fgr) and p56/p53(Lyn) did not. The p59/p56(Hck) activity was closely correlated with the tyrosine phosphorylation level of Vav. Treatment of EMC-D virus-infected mice with the Src kinase inhibitor, PP2, resulted in the inhibition of p59/p56(Hck) activity and almost complete inhibition of the production of TNF-α and iNOS in macrophages and the subsequent prevention of diabetes in mice. On the basis of these observations, we conclude that the Src kinase, p59/p56(Hck), plays an important role in the activation of macrophages and the subsequent production of TNF-α and nitric oxide, leading to the destruction of pancreatic β cells, which results in the development of diabetes in mice infected with a low dose of EMC-D virus

    Herstellung mikrobieller Enzympräparate

    No full text
    corecore