1,366 research outputs found
Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease
Background: Cigarette smoke induced oxidative stress has been shown to reduce silent information regulator 1 (Sirt1) levels in lung tissue from smokers and patients with COPD patients. Sirt1 is known to inhibit endothelial senescence and may play a protective role in vascular cells. Endothelial progenitor cells (EPCs) are mobilized into circulation under various pathophysiological conditions, and are thought to play an important role in tissue repair in chronic obstructive lung disease (COPD). Therefore, Sirt1 and EPC-associated mRNAs were measured in blood samples from patients with COPD and from cultured CD34+ progenitor cells to examine whether these genes are associated with COPD development. Methods: This study included 358 patients with a smoking history of more than 10 pack-years. RNA was extracted from blood samples and from CD34+ progenitor cells treated with cigarette smoke extract (CSE), followed by assessment of CD31, CD34, Sirt1 mRNA, miR-34a, and miR-126-3p expression by real-time RT-PCR. Results: The expression of CD31, CD34, Sirt1 mRNAs, and miR-126-3p decreased and that of miR-34a increased in moderate COPD compared with that in control smokers. However, no significant differences in these genes were observed in blood cells from patients with severe COPD compared with those in control smokers. CSE significantly decreased Sirt1 and increased miR-34a expression in cultured progenitor cells. Conclusion: Sirt1 expression in blood cells from patients with COPD could be a biomarker for disease stability in patients with moderate COPD. MiR-34a may participate in apoptosis and/or senescence of EPCs in smokers. Decreased expression of CD31, CD34, and miR-126-3p potentially represents decreased numbers of EPCs in blood cell from patients with COPD
Differential-difference system related to toroidal Lie algebra
We present a novel differential-difference system in (2+1)-dimensional
space-time (one discrete, two continuum), arisen from the Bogoyavlensky's
(2+1)-dimensional KdV hierarchy. Our method is based on the bilinear identity
of the hierarchy, which is related to the vertex operator representation of the
toroidal Lie algebra \sl_2^{tor}.Comment: 10 pages, 4 figures, pLaTeX2e, uses amsmath, amssymb, amsthm,
graphic
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate
Kato O, Youn J-W, Stansen KC, Matsui D, Oikawa T, Wendisch VF. Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiology. 2010;10(1): 321.Background:
Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032.
Results:
Here, the gene cg1027 was shown to encode the quinone-dependent D-lactate dehydrogenase (Dld) by enzymatic analysis of the protein purified from recombinant E. coli. The absorption spectrum of purified Dld indicated the presence of FAD as bound cofactor. Inactivation of dld resulted in the loss of the ability to grow with D-lactate, which could be restored by plasmid-borne expression of dld. Heterologous expression of dld from C. glutamicum ATCC 13032 in C. efficiens enabled this species to grow with D-lactate as sole carbon source. Homologs of dld of C. glutamicum ATCC 13032 are not encoded in the sequenced genomes of other corynebacteria and mycobacteria. However, the dld locus of C. glutamicum ATCC 13032 shares 2367 bp of 2372 bp identical nucleotides with the dld locus of Propionibacterium freudenreichii subsp. shermanii, a bacterium used in Swiss-type cheese making. Both loci are flanked by insertion sequences of the same family suggesting a possible event of horizontal gene transfer.
Conclusions:
Cg1067 encodes quinone-dependent D-lactate dehydrogenase Dld of Corynebacterium glutamicum. Dld is essential for growth with D-lactate as sole carbon source. The genomic region of dld likely has been acquired by horizontal gene transfer
Promising ferromagnetic Ni-Co-Al shape memory alloy system
科研費報告書収録論文(課題番号:13555181・基盤研究(B)(2) ・H13~H14/研究代表者:貝沼, 亮介/新しいB2型強磁性形状記憶合金の開発と多機能素子への展開
A Polymerase-chain-reaction Assay for the Specific Identification of Transcripts Encoded by Individual Carcinoembryonic Antigen (CEA)-gene-family Members
Carcinoembryonic antigen (CEA) is a tumor marker that belongs to a family of closely related molecules with variable expression patterns. We have developed sets of oligonucleotide primers for the specific amplification of transcripts from individual CEA-family members using the reverse transcriptase/ polymerase chain reaction (RT/PCR). Specific primer sets were designed for CEA, non-specific cross-reacting antigen (NCA), biliary glycoprotein (BGP), carcinoembryonic antigen gene-family members 1, 6 and 7 (CGMI, CGM6 and CGM7), and one set for all pregnancy-specific glycoprotein (PSG) transcripts. Primers were first tested for their specificity against individual cDNA clones and product-hybridization with internal, transcript-specific oligonucleotides. Total RNA from 12 brain and 63 gynecological tumors were then tested for expression of CEA-related transcripts. None were found in tumors located in the brain, including various mesenchymal and neuro-epithelial tumors. CEA and NCA transcripts were, however, present in an adenocarcinoma located in the nasal sinuses. In ovarian mucinous adenocarcinomas, we always found co-expression of CEA and NCA transcripts, and occasionally BGP mRNA. CEA-related transcripts were also found in some serous, endometrioid and clear-cell ovarian carcinomas. CEA, NCA and BGP transcripts were present in endometrial carcinomas of the uterus and cervical carcinomas, whereas uterine leiomyomas were completely negative. No transcripts were found from CGM 1, CGM6, CGM7 or from PSG genes in any of the tumors tested. The PCR data were compared with immunohistochemical investigations of ovarian tumors at the protein level using CEA (26/3/13)-, NCA-50/90 (9A6FR) and NCA-95 (80H3)-specific monoclonal antibodies
Genomic Organization, Splice Variants and Expression of CGMl, a CD66-related Member of the Carcinoembryonic Antigen Gene Family
The tumor marker carcinoembryonic antigen (CEA) belongs to a family of proteins which are composed of one immunogiobulin variable domain and a varying number of immunoglobulin constant-like domains. Most of the membrane-bound members, which are anchored either by a glycosylphosphatidylinositol moiety or a transmembrane domain, have been shown to convey cell adhesion in vitro. Here we describe two splice variants of CGMI. a transmembrane member of the CEA family without immunoglobulin constant.like domains. CGM1a and CGM1c contain cytopiasmic domains of 71 and 31 amino acids, respectively, The cytoplasmic region of CGM1a is encoded by four exons (Cyt1-Cyt4). Differential splicing of the Cyt1 exon (53 bp)..
Influence of intermartensitic transitions on transport properties of Ni2.16Mn0.84Ga alloy
Magnetic, transport, and x-ray diffraction measurements of ferromagnetic
shape memory alloy NiMnGa revealed that this alloy undergoes
an intermartensitic transition upon cooling, whereas no such a transition is
observed upon subsequent heating. The difference in the modulation of the
martensite forming upon cooling from the high-temperature austenitic state
[5-layered (5M) martensite], and the martensite forming upon the
intermartensitic transition [7-layered (7M) martensite] strongly affects the
magnetic and transport properties of the alloy and results in a large thermal
hysteresis of the resistivity and magnetization . The
intermartensitic transition has an especially marked influence on the transport
properties, as is evident from a large difference in the resistivity of the 5M
and 7M martensite, , which is larger than the jump of resistivity at
the martensitic transition from the cubic austenitic phase to the monoclinic 5M
martensitic phase. We assume that this significant difference in between
the martensitic phases is accounted for by nesting features of the Fermi
surface. It is also suggested that the nesting hypothesis can explain the
uncommon behavior of the resistivity at the martensitic transition, observed in
stoichiometric and near-stoichiometric Ni-Mn-Ga alloys.Comment: 7 pages, 6 figures, REVTEX
- …