145 research outputs found

    Distribution of Microscopic Energy Flux in Equilibrium State

    Full text link
    The distribution function P(j) of the microscopic energy flux, j, in equilibrium state is studied. It is observed that P(j) has a broad peak in small j regime and a stretched-exponential decay for large j. The peak structure originates in a potential advection term and energy transfer term between the particles. The stretched exponential tail comes from the momentum energy advection term.Comment: 5 pages, 2 figure

    Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    Full text link
    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient.Comment: 4 page

    Divergent Thermal Conductivity in Three-dimensional Nonlinear lattices

    Full text link
    Heat conduction in three-dimensional nonlinear lattices is investigated using a particle dynamics simulation. The system is a simple three-dimensional extension of the Fermi-Pasta-Ulam ÎČ\beta (FPU-ÎČ\beta) nonlinear lattices, in which the interparticle potential has a biquadratic term together with a harmonic term. The system size is L×L×2LL\times L\times 2L, and the heat is made to flow in the 2L2L direction the Nose-Hoover method. Although a linear temperature profile is realized, the ratio of enerfy flux to temperature gradient shows logarithmic divergence with LL. The autocorrelation function of energy flux C(t)C(t) is observed to show power-law decay as t−0.98±0,25t^{-0.98\pm 0,25}, which is slower than the decay in conventional momentum-cnserving three-dimensional systems (t−3/2t^{-3/2}). Similar behavior is also observed in the four dimensional system.Comment: 4 pages, 5 figures. Accepted for publication in J. Phys. Soc. Japan Letter

    Idiopathic pulmonary fibrosis and a role for autoimmunity

    Get PDF
    Idiopathic Pulmonary Fibrosis (IPF) is the most common of the idiopathic interstitial pneumonias. It is typically associated with extensive and progressive fibrosis, is fatal and has limited treatment options. Characteristically IPF patients display large lymphocyte aggregates composed of CD3+ T cells and CD20+ B cells within the lung tissue that are located near sites of active fibrosis. In addition, IPF patients can have autoantibodies to a range of host antigens, suggesting a breakdown in immunological tolerance. In this review we examine the role of T and B cells in IPF pathogenesis and discuss how loss of self- tolerance to lung specific proteins could exacerbate disease progression in IPF. We discuss what these results mean in terms of future prospects for immunotherapy of IPF

    Long-Time Behavior of Velocity Autocorrelation Function for Interacting Particles in a Two-Dimensional Disordered System

    Full text link
    The long-time behavior of the velocity autocorrelation function (VACF) is investigated by the molecular dynamics simulation of a two-dimensional system which has both a many-body interaction and a random potential. With strengthening the random potential by increasing the density of impurities, a crossover behavior of the VACF is observed from a positive tail, which is proportional to t^{-1}, to a negative tail, proportional to -t^{-2}. The latter tail exists even when the density of particles is the same order as the density of impurities. The behavior of the VACF in a nonequilibrium steady state is also studied. In the linear response regime the behavior is similar to that in the equilibrium state, whereas it changes drastically in the nonlinear response regime.Comment: 12 pages, 5 figure

    The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and medically refractory lung disease with a grim prognosis. Although the etiology of IPF remains perplexing, abnormal adaptive immune responses are evident in many afflicted patients. We hypothesized that perturbations of human leukocyte antigen (HLA) allele frequencies, which are often seen among patients with immunologic diseases, may also be present in IPF patients. Methods/Principal Findings: HLA alleles were determined in subpopulations of IPF and normal subjects using molecular typing methods. HLA-DRB1*15 was over-represented in a discovery cohort of 79 Caucasian IPF subjects who had lung transplantations at the University of Pittsburgh (36.7%) compared to normal reference populations. These findings were prospectively replicated in a validation cohort of 196 additional IPF subjects from four other U.S. medical centers that included both ambulatory patients and lung transplantation recipients. High-resolution typing was used to further define specific HLA-DRB1*15 alleles. DRB1*1501 prevalence in IPF subjects was similar among the 143 ambulatory patients and 132 transplant recipients (31.5% and 34.8%, respectively, p = 0.55). The aggregate prevalence of DRB1*1501 in IPF patients was significantly greater than among 285 healthy controls (33.1% vs. 20.0%, respectively, OR 2.0; 95%CI 1.3-2.9, p = 0.0004). IPF patients with DRB1*1501 (n = 91) tended to have decreased diffusing capacities for carbon monoxide (DLCO) compared to the 184 disease subjects who lacked this allele (37.8±1.7% vs. 42.8±1.4%, p = 0.036). Conclusions/Significance: DRB1*1501 is more prevalent among IPF patients than normal subjects, and may be associated with greater impairment of gas exchange. These data are novel evidence that immunogenetic processes can play a role in the susceptibility to and/or manifestations of IPF. Findings here of a disease association at the HLA-DR locus have broad pathogenic implications, illustrate a specific chromosomal area for incremental, targeted genomic study, and may identify a distinct clinical phenotype among patients with this enigmatic, morbid lung disease

    Cosmological and black hole brane-world Universes in higher derivative gravity

    Get PDF
    General model of multidimensional R2R^2-gravity including Riemann tensor square term (non-zero cc case) is considered. The number of brane-worlds in such model is constructed (mainly in five dimensions) and their properties are discussed. Thermodynamics of S-AdS BH (with boundary) is presented when perturbation on cc is used. The entropy, free energy and energy are calculated. For non-zero cc the entropy (energy) is not proportional to the area (mass). The equation of motion of brane in BH background is presented as FRW equation. Using dual CFT description it is shown that dual field theory is not conformal one when cc is not zero. In this case the holographic entropy does not coincide with BH entropy (they coincide for Einstein gravity or c=0c=0 HD gravity where AdS/CFT description is well applied). Asymmetrically warped background (analog of charged AdS BH) where Lorentz invariance violation occurs is found. The cosmological 4d dS brane connecting two dS bulk spaces is formulated in terms of parameters of R2R^2-gravity. Within proposed dS/CFT correspondence the holographic conformal anomaly from five-dimensional higher derivative gravity in de Sitter background is evaluated.Comment: LaTeX file 40 pages, references added, version to appear in PR
    • 

    corecore