63 research outputs found
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
A simple rule to determine which insolation cycles lead to interglacials
The pacing of glacialâinterglacial cycles during the Quaternary period (the past 2.6 million years) is attributed to astronomically driven changes in high-latitude insolation. However, it has not been clear how astronomical forcing translates into the observed sequence of interglacials. Here we show that before one million years ago interglacials occurred when the energy related to summer insolation exceeded a simple threshold, about every 41,000 years. Over the past one million years, fewer of these insolation peaks resulted in deglaciation (that is, more insolation peaks were âskippedâ), implying that the energy threshold for deglaciation had risen, which led to longer glacials. However, as a glacial lengthens, the energy needed for deglaciation decreases. A statistical model that combines these observations correctly predicts every complete deglaciation of the past million years and shows that the sequence of interglacials that has occurred is one of a small set of possibilities. The model accounts for the dominance of obliquity-paced glacialâinterglacial cycles early in the Quaternary and for the change in their frequency about one million years ago. We propose that the appearance of larger ice sheets over the past million years was a consequence of an increase in the deglaciation threshold and in the number of skipped insolation peaks.P.C.T. acknowledges funding from a Leverhulme Trust Research Project Grant (RPG-2014-417). M.C. and T.M. acknowledge support from the Belgian Policy Office under contract BR/121/A2/STOCHCLIM. E.W.W. is funded under a Royal Society Research Professorship and M.C. is a senior research scientist with the Belgian National Fund of Scientific Research
Chemical and optical studies of glass shards in Pleistocene and Pliocene ash layers from DSDP site 192, Northwest Pacific Ocean
Thirty-four ash layers of Pleistocene and Pliocene age from DSDP Site 192, northwestern Pacific Ocean, have been subjected to detailed chemical and optical study to evaluate: (1) the chemical and optical variability in glass shards from deep-sea ash layers, and (2) secondary changes brought about by prolonged exposure to seawater. Glass shards from approximately half of the ash layers studied were found to have uniform compositions which approach the precision of the microprobe chemical analyses, whereas the remainder are compositionally diverse (e.g., SiO2, variations of 5â15% among shards from the same ash layer) and appear to be the eruptive products of compositionally zoned magma chambers. Optical studies of glass shards confirm the absence of devitrification or the formation of pervasive secondary alteration products. By contrast, chemical studies suggest that the glass shards have experienced progressive hydration with possible minor ion exchange of K, Mg, Ca and Si. The hydration occurs rapidly and leads to a rather uniform water content of 4.5â5% after several hundred thousands of years exposure to seawater. Step-wise heating dehydration experiments, optical effects, and published'oxygen isotope studies indicate that the water of hydration is incorporated uniformly within the glass. Systematic chemical differences between electron microprobe analyses of glass shard interiors and corresponding bulk chemical study by atomic absorption lead us to postulate that glass shard margins have undergone a minor chemical exchange with major cations in seawater. They have gained 0.10â0.20 wt. % K20, MgO, and CaO while losing a corresponding amount of Si2O. Although the glass shards from DSDP Site 192 are hydrated and may have experienced subtle, surficial ion exchange, we stress that they are the most chemically representative samples available of magmas that were explosively erupted from volcanic arcs
Compositions of deep-sea ash layers derived from north pacific volcanic arcs: variations in time and space
Glass separates from 115 ash layers derived from the Kamchatkan (DSDP Site 192; 34 layers), the eastern Aleutian (DSDP Site 183; 56 layers) and the Alaska Peninsula (DSDP Site 178; 25 layers) volcanic arcs have been analyzed for up to 28 elements. In addition, the abundance and diversity of associated mafic phenocrysts have been evaluated. The resulting data set has made possible an evaluation of the late Miocene to Recent changes in composition of ashes derived from North Pacific volcanic arcs and of the factors controlling the evolution of highly siliceous magmas.
We find no evidence for a general transition from arc tholeiite to calc-alkalic magma parentage of ashes derived from the volcanic arcs during the last 10 m.y., but instead find 0.1- to 0.5-m.y. intervals during which particular types of volcanism are prevalent. Most convincing is the transition from arc tholeiite to calc-alkalic for ashes derived from Kamchatka during the last 0.8 m.y., a change believed to be associated with a landward shift in the site of magma generation. Considered together, ashes derived from North Pacific volcanic arcs have been becoming more siliceous during the last 1.5 m.y. and may be associated with accelerated subduction during the same time interval.
Hydrous phenocrysts (e.g., biotite) are typically associated with low-silica deep-sea ashes, but not with terrestrial volcanic rocks of comparable silica contents, suggesting the important role of water in the evolution of siliceous magma. REE patterns and relative abundances of mafic phenocrysts demonstrate the importance of fractional crystallization in controlling the evolution of highly siliceous arc magmas. REE increase with increasing silica, but become less concentrated in ashes with SiO2 > 64%. Eu anomalies increase throughout the SiO2 range. Initial fractionation is dominated by clinopyroxene and plagioclase with amphibole strongly influencing fractionation above 64% SiO2
- âŠ