2,252 research outputs found

    New exact results on density matrix for XXX spin chain

    Full text link
    Using the fermionic basis we obtain the expectation values of all \slt-invariant and CC-invariant local operators on 10 sites for the anisotropic six-vertex model on a cylinder with generic Matsubara data. This is equivalent to the generalised Gibbs ensemble for the XXX spin chain. In the case when the \slt and CC symmetries are not broken this computation is equivalent to finding the entire density matrix up to 10 sites. As application, we compute the entanglement entropy without and with temperature, and compare the results with CFT predictions.Comment: 20 pages, 4 figure

    Algebraic representation of correlation functions in integrable spin chains

    Full text link
    Taking the XXZ chain as the main example, we give a review of an algebraic representation of correlation functions in integrable spin chains obtained recently. We rewrite the previous formulas in a form which works equally well for the physically interesting homogeneous chains. We discuss also the case of quantum group invariant operators and generalization to the XYZ chain.Comment: 31 pages, no figur

    A recursion formula for the correlation functions of an inhomogeneous XXX model

    Full text link
    A new recursion formula is presented for the correlation functions of the integrable spin 1/2 XXX chain with inhomogeneity. It relates the correlators involving n consecutive lattice sites to those with n-1 and n-2 sites. In a series of papers by V. Korepin and two of the present authors, it was discovered that the correlators have a certain specific structure as functions of the inhomogeneity parameters. Our formula allows for a direct proof of this structure, as well as an exact description of the rational functions which has been left undetermined in the previous works.Comment: 37 pages, 1 figure, Proof of Lemma 4.8 modifie

    Fermionic screening operators in the sine-Gordon model

    Full text link
    Extending our previous construction in the sine-Gordon model, we show how to introduce two kinds of fermionic screening operators, in close analogy with conformal field theory with c<1.Comment: 18 pages, 1 figur

    Heat operator with pure soliton potential: properties of Jost and dual Jost solutions

    Full text link
    Properties of Jost and dual Jost solutions of the heat equation, Φ(x,k)\Phi(x,k) and Ψ(x,k)\Psi(x,k), in the case of a pure solitonic potential are studied in detail. We describe their analytical properties on the spectral parameter kk and their asymptotic behavior on the xx-plane and we show that the values of e−qxΦ(x,k)e^{-qx}\Phi(x,k) and the residua of eqxΨ(x,k)e^{qx}\Psi(x,k) at special discrete values of kk are bounded functions of xx in a polygonal region of the qq-plane. Correspondingly, we deduce that the extended version L(q)L(q) of the heat operator with a pure solitonic potential has left and right annihilators for qq belonging to these polygonal regions.Comment: 26 pages, 3 figure

    Soliton solutions of the Kadomtsev-Petviashvili II equation

    Full text link
    We study a general class of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation by investigating the Wronskian form of its tau-function. We show that, in addition to previously known line-soliton solutions, this class also contains a large variety of new multi-soliton solutions, many of which exhibit nontrivial spatial interaction patterns. We also show that, in general, such solutions consist of unequal numbers of incoming and outgoing line solitons. From the asymptotic analysis of the tau-function, we explicitly characterize the incoming and outgoing line-solitons of this class of solutions. We illustrate these results by discussing several examples.Comment: 28 pages, 4 figure
    • …
    corecore