2 research outputs found

    Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip

    Get PDF
    Microfabricated ion traps are a major advancement towards scalable quantum computing with trapped ions. The development of more versatile ion-trap designs, in which tailored arrays of ions are positioned in two dimensions above a microfabricated surface, will lead to applications in fields as varied as quantum simulation, metrology and atom–ion interactions. Current surface ion traps often have low trap depths and high heating rates, because of the size of the voltages that can be applied to them, limiting the fidelity of quantum gates. Here we report on a fabrication process that allows for the application of very high voltages to microfabricated devices in general and use this advance to fabricate a two-dimensional ion-trap lattice on a microchip. Our microfabricated architecture allows for reliable trapping of two-dimensional ion lattices, long ion lifetimes, rudimentary shuttling between lattice sites and the ability to deterministically introduce defects into the ion lattice

    GABA Receptors and the Pharmacology of Sleep

    Get PDF
    Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia
    corecore