8,086 research outputs found

    Soliton dynamics in damped and forced Boussinesq equations

    Full text link
    We investigate the dynamics of a lattice soliton on a monatomic chain in the presence of damping and external forces. We consider Stokes and hydrodynamical damping. In the quasi-continuum limit the discrete system leads to a damped and forced Boussinesq equation. By using a multiple-scale perturbation expansion up to second order in the framework of the quasi-continuum approach we derive a general expression for the first-order velocity correction which improves previous results. We compare the soliton position and shape predicted by the theory with simulations carried out on the level of the monatomic chain system as well as on the level of the quasi-continuum limit system. For this purpose we restrict ourselves to specific examples, namely potentials with cubic and quartic anharmonicities as well as the truncated Morse potential, without taking into account external forces. For both types of damping we find a good agreement with the numerical simulations both for the soliton position and for the tail which appears at the rear of the soliton. Moreover we clarify why the quasi-continuum approximation is better in the hydrodynamical damping case than in the Stokes damping case

    Loop space and evolution of the light-like Wilson polygons

    Full text link
    We address a connection between the energy evolution of the polygonal light-like Wilson exponentials and the geometry of the loop space with the gauge invariant Wilson loops of a variety of shapes being the fundamental degrees of freedom. The renormalization properties and the differential area evolution of these Wilson polygons are studied by making use of the universal Schwinger quantum dynamical approach. We discuss the appropriateness of the dynamical differential equations in the loop space to the study of the energy evolution of the collinear and transverse-momentum dependent parton distribution functions.Comment: 8 pages, 2 eps figures; needs ws-ijmpcs.cls (supplied). Invited talk presented at the QCD Evolution Workshop, May 14 - 17 (2012), Thomas Jefferson National Accelerator Facility, Newport News (VA), US

    Long-range effects on superdiffusive solitons in anharmonic chains

    Full text link
    Studies on thermal diffusion of lattice solitons in Fermi-Pasta-Ulam (FPU)-like lattices were recently generalized to the case of dispersive long-range interactions (LRI) of the Kac-Baker form. The position variance of the soliton shows a stronger than linear time-dependence (superdiffusion) as found earlier for lattice solitons on FPU chains with nearest neighbour interactions (NNI). In contrast to the NNI case where the position variance at moderate soliton velocities has a considerable linear time-dependence (normal diffusion), the solitons with LRI are dominated by a superdiffusive mechanism where the position variance mainly depends quadratic and cubic on time. Since the superdiffusion seems to be generic for nontopological solitons, we want to illuminate the role of the soliton shape on the superdiffusive mechanism. Therefore, we concentrate on a FPU-like lattice with a certain class of power-law long-range interactions where the solitons have algebraic tails instead of exponential tails in the case of FPU-type interactions (with or without Kac-Baker LRI). A collective variable (CV) approach in the continuum approximation of the system leads to stochastic integro-differential equations which can be reduced to Langevin-type equations for the CV position and width. We are able to derive an analytical result for the soliton diffusion which agrees well with the simulations of the discrete system. Despite of structurally similar Langevin systems for the two soliton types, the algebraic solitons reach the superdiffusive long-time limit with a characteristic t1.5t^{1.5} time-dependence much faster than exponential solitons. The soliton shape determines the diffusion constant in the long-time limit that is approximately a factor of π\pi smaller for algebraic solitons.Comment: 7 figure

    Evolution and Dynamics of Cusped Light-Like Wilson Loops in Loop Space

    Full text link
    We discuss the possible relation between the singular structure of TMDs on the light-cone and the geometrical behaviour of rectangular Wilson loops.Comment: Proceedings for Diffraction 2012, Lanzarote, Spain. 5 pages, 2 figure

    Cusped light-like Wilson loops in gauge theories

    Full text link
    We propose and discuss a new approach to the analysis of the correlation functions which contain light-like Wilson lines or loops, the latter being cusped in addition. The objects of interest are therefore the light-like Wilson null-polygons, the soft factors of the parton distribution and fragmentation functions, high-energy scattering amplitudes in the eikonal approximation, gravitational Wilson lines, etc. Our method is based on a generalization of the universal quantum dynamical principle by J. Schwinger and allows one to take care of extra singularities emerging due to light-like or semi-light-like cusps. We show that such Wilson loops obey a differential equation which connects the area variations and renormalization group behavior of those objects and discuss the possible relation between geometrical structure of the loop space and area evolution of the light-like cusped Wilson loops.Comment: Invited mini-review article to Physics of Particles and Nuclei. 16 pages, 9 eps figures; v2: references style changed, citations corrected and update

    Scattering of vortex pairs in 2D easy-plane ferromagnets

    Full text link
    Vortex-antivortex pairs in 2D easy-plane ferromagnets have characteristics of solitons in two dimensions. We investigate numerically and analytically the dynamics of such vortex pairs. In particular we simulate numerically the head-on collision of two pairs with different velocities for a wide range of the total linear momentum of the system. If the momentum difference of the two pairs is small, the vortices exchange partners, scatter at an angle depending on this difference, and form two new identical pairs. If it is large, the pairs pass through each other without losing their identity. We also study head-tail collisions. Two identical pairs moving in the same direction are bound into a moving quadrupole in which the two vortices as well as the two antivortices rotate around each other. We study the scattering processes also analytically in the frame of a collective variable theory, where the equations of motion for a system of four vortices constitute an integrable system. The features of the different collision scenarios are fully reproduced by the theory. We finally compare some aspects of the present soliton scattering with the corresponding situation in one dimension.Comment: 13 pages (RevTeX), 8 figure
    • …
    corecore