4 research outputs found
Facile Preparation of Macroscopic Soft Colloidal Crystals with Fiber Symmetry
A facile, efficient way to fabricate macroscopic soft colloidal crystals with fiber symmetry by drying a latex dispersion in a tube is presented. A transparent, stable colloidal crystal was obtained from a 25 wt % latex dispersion by complete water evaporation for 4 days. The centimeter-long sample was investigated by means of synchrotron small-angle X-ray diffraction (SAXD). Analysis of a large number of distinct Bragg peaks reveals that uniaxially oriented colloidal crystals with face-centered cubic lattice structure were formed. The measurement of evaporation rates under different conditions indicates that the water evaporates primarily through the optically clear regions (i.e., via the solid material) even when the region is more than 2 mm thick
Heterogeneous nucleation and microstructure formation in colloidal model systems with various interactions
Recent studies of crystal nucleation and further microstructure formation in colloidal model systems are reviewed. Homogeneous as well as different heterogeneous nucleation scenarios will be discussed. We focus on the crystallization process of one component colloidal model systems with hard sphere like interaction, long range electrostatic interaction and depletion force induced attractive interaction. Heterogeneous crystallization on flat and smooth substrates, on structured substrates, induced by different kind of seed particles as well as inoculation adding a larger amount of seeds will be presented