1,410 research outputs found

    SR-FTiR microscopy and FTIR imaging in the earth sciences

    Full text link
    During the last decades, several books have been devoted to the application of spectroscopic methods in mineralogy. Several short courses and meetings have addressed particular aspects of spectroscopy, such as the analysis of hydrous components in minerals and Earth materials. In these books, complete treatment of the infrared theory and practical aspects of instrumentation and methods, along with an exhaustive list of references, can be found. The present chapter is intended to cover those aspects of infrared spectroscopy that have been developed in the past decade and are not included in earlier reviews such as Volume 18 of Reviews in Mineralogy. These new topics involve primarily: (1) the use of synchrotron radiation (SR), which, although not a routine method, is now rather extensively applied in infrared studies, in particular those requiring ultimate spatial and time resolution and the analysis of extremely small samples (a few tens of micrometers); (2) the development of imaging techniques also for foreseen time resolved studies of geo-mineralogical processes and environmental studies.Comment: 36 pages, 24 figures - Reviews in Mineralogy & Geochemistry - Vol. 78 (2013) in pres

    A Dimerized HMX1 Inhibits EPHA6/epha4b in Mouse and Zebrafish Retinas.

    Get PDF
    HMX1 is a homeobox-containing transcription factor implicated in eye development and responsible for the oculo-auricular syndrome of Schorderet-Munier-Franceschetti. HMX1 is composed of two exons with three conserved domains in exon 2, a homeobox and two domains called SD1 and SD2. The function of the latter two domains remains unknown. During retinal development, HMX1 is expressed in a polarized manner and thus seems to play a role in the establishment of retinal polarity although its exact role and mode of action in eye development are unknown. Here, we demonstrated that HMX1 dimerized and that the SD1 and homeodomains are required for this function. In addition, we showed that proper nuclear localization requires the presence of the homeodomain. We also identified that EPHA6, a gene implicated in retinal axon guidance, is one of its targets in eye development and showed that a dimerized HMX1 is needed to inhibit EPHA6 expression

    Self-sealing posterior scleral perforation in airgun ocular trauma, surgical tip: A case report

    Get PDF
    Background: Intraorbital metallic foreign bodies have varied clinical presentations. Here, we report the unusual case of intraoperative evidence of spontaneously healed posterior scleral perforation in a severe ballistic trauma without previous instrumental signs of penetrating wound and complete visual restoration after surgery. Case presentation: The patient was hit by several lead hunting pellets in the chest, abdomen, limbs, face and orbit. Computed Tomography (CT) images revealed the presence of a pellet within the orbitary cavity, close to the optic nerve, with no signs of penetrating ocular wound. While performing vitrectomy for severe vitreous hemorrhage, a point of strong adherence between a old hemorrhage and retinal surface was identified and managed conservatively, as it was attributed to trauma related-impact area. So, lead foreign body took an unusual trajectory impacting the globe and finally lodging back in the deep orbitary cavity, in absence of significant ocular injury and with visual prognosis preservation. Conclusions: Our findings provide further information on orbital injuries from airguns, a theme of growing popularity and concern. Intraoperative recognition of hardly removable old hemorrhagic clot as self-blockage site of posterior scleral penetrating trauma, allowed for surgical stabilization and minimal solicitation of the area to avoid inadvertent perforation

    On the estimation of the curvatures and bending rigidity of membrane networks via a local maximum-entropy approach

    Full text link
    We present a meshfree method for the curvature estimation of membrane networks based on the Local Maximum Entropy approach recently presented in (Arroyo and Ortiz, 2006). A continuum regularization of the network is carried out by balancing the maximization of the information entropy corresponding to the nodal data, with the minimization of the total width of the shape functions. The accuracy and convergence properties of the given curvature prediction procedure are assessed through numerical applications to benchmark problems, which include coarse grained molecular dynamics simulations of the fluctuations of red blood cell membranes (Marcelli et al., 2005; Hale et al., 2009). We also provide an energetic discrete-to-continuum approach to the prediction of the zero-temperature bending rigidity of membrane networks, which is based on the integration of the local curvature estimates. The Local Maximum Entropy approach is easily applicable to the continuum regularization of fluctuating membranes, and the prediction of membrane and bending elasticities of molecular dynamics models

    A fully automated pipeline for a robust conjunctival hyperemia estimation

    Get PDF
    Purpose: Many semi-automated and fully-automated approaches have been proposed in literature to improve the objectivity of the estimation of conjunctival hyperemia, based on image processing analysis of eyes’ photographs. The purpose is to improve its evaluation using faster fully-automated systems and independent by the human subjectivity. Methods: In this work, we introduce a fully-automated analysis of the redness grading scales able to completely automatize the clinical procedure, starting from the acquired image to the redness estimation. In particular, we introduce a neural network model for the conjunctival segmentation followed by an image processing pipeline for the vessels network segmentation. From these steps, we extract some features already known in literature and whose correlation with the conjunctival redness has already been proved. Lastly, we implemented a predictive model for the conjunctival hyperemia using these features. Results: In this work, we used a dataset of images acquired during clinical practice.We trained a neural network model for the conjunctival segmentation, obtaining an average accuracy of 0.94 and a corresponding IoU score of 0.88 on a test set of images. The set of features extracted on these ROIs is able to correctly predict the Efron scale values with a Spearman’s correlation coefficient of 0.701 on a set of not previously used samples. Conclusions: The robustness of our pipeline confirms its possible usage in a clinical practice as a viable decision support system for the ophthalmologists

    Review on Augmented Reality in Oral and Cranio-Maxillofacial Surgery: Toward 'Surgery-Specific' Head-Up Displays

    Get PDF
    In recent years, there has been an increasing interest towards the augmented reality as applied to the surgical field. We conducted a systematic review of literature classifying the augmented reality applications in oral and cranio-maxillofacial surgery (OCMS) in order to pave the way to future solutions that may ease the adoption of AR guidance in surgical practice. Publications containing the terms 'augmented reality' AND 'maxillofacial surgery', and the terms 'augmented reality' AND 'oral surgery' were searched in the PubMed database. Through the selected studies, we performed a preliminary breakdown according to general aspects, such as surgical subspecialty, year of publication and country of research; then, a more specific breakdown was provided according to technical features of AR-based devices, such as virtual data source, visualization processing mode, tracking mode, registration technique and AR display type. The systematic search identified 30 eligible publications. Most studies (14) were in orthognatic surgery, the minority (2) concerned traumatology, while 6 studies were in oncology and 8 in general OCMS. In 8 of 30 studies the AR systems were based on a head-mounted approach using smart glasses or headsets. In most of these cases (7), a video-see-through mode was implemented, while only 1 study described an optical-see-through mode. In the remaining 22 studies, the AR content was displayed on 2D displays (10), full-parallax 3D displays (6) and projectors (5). In 1 case the AR display type is not specified. AR applications are of increasing interest and adoption in oral and cranio-maxillofacial surgery, however, the quality of the AR experience represents the key requisite for a successful result. Widespread use of AR systems in the operating room may be encouraged by the availability of 'surgery-specific' head-mounted devices that should guarantee the accuracy required for surgical tasks and the optimal ergonomics

    MEMS-Switched Triangular and U-Shaped Band-Stop Resonators for K-Band Operation

    Get PDF
    Triangular resonators re-shaped into Sierpinski geometry and U-shaped resonators were designed, linking them with single-pole-double-through (SPDT) RF MEMS switches to provide frequency tuning for potential applications in the K-Band. Prototypes of band-stop narrowband filters working around 20 GHz and 26 GHz, interesting for RADAR and satellite communications, were studied in a coplanar waveguide (CPW) configuration, and the tuning was obtained by switching between two paths of the devices loaded with different resonators. As a result, dual-band operation or fine-tuning could be obtained depending on the choice of the resonator, acting as a building block. The studied filters belong to the more general group of devices inspired by a metamaterial design

    Triangular Sierpinski Microwave Band-Stop Resonators for K-Band Filtering

    Get PDF
    Triangular resonators re-shaped with Sierpinski geometry were designed, manufactured, and tested for potential applications in the K-Band. Prototypes of band-stop filters working around 20 GHz and 26 GHz, interesting for RADAR and satellite communications, were studied in a coplanar waveguide (CPW) configuration. Single and coupled structures were analyzed to give evidence for: (i) the tuning of the resonance frequency by increasing the internal complexity of the triangle and (ii) resonance enhancement when coupled structures are considered. The exploited devices were part of the more extended family of metamaterial-inspired structures, and they were studied for their heuristic approach to the prediction of the spectrum using experimental results supported by electromagnetic simulations. As a result, a Sierpinski resonator, not only fed into but also fully embedded into a CPW environment, had a frequency response that was not easily determined by classical theoretical approaches
    corecore