59 research outputs found

    AluY-mediated germline deletion, duplication and somatic stem cell reversion in <i>UBE2T</i> defines a new subtype of Fanconi anemia

    Get PDF
    Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene.</p

    Developmental Transcriptional Networks Are Required to Maintain Neuronal Subtype Identity in the Mature Nervous System

    Get PDF
    During neurogenesis, transcription factors combinatorially specify neuronal fates and then differentiate subtype identities by inducing subtype-specific gene expression profiles. But how is neuronal subtype identity maintained in mature neurons? Modeling this question in two Drosophila neuronal subtypes (Tv1 and Tv4), we test whether the subtype transcription factor networks that direct differentiation during development are required persistently for long-term maintenance of subtype identity. By conditional transcription factor knockdown in adult Tv neurons after normal development, we find that most transcription factors within the Tv1/Tv4 subtype transcription networks are indeed required to maintain Tv1/Tv4 subtype-specific gene expression in adults. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental transcription factor networks. We also examined the cross-regulatory relationships between all transcription factors that persisted in adult Tv1/Tv4 neurons. We show that certain critical cross-regulatory relationships that had existed between these transcription factors during development were no longer present in the mature adult neuron. This points to key differences between developmental and maintenance transcriptional regulatory networks in individual neurons. Together, our results provide novel insight showing that the maintenance of subtype identity is an active process underpinned by persistently active, combinatorially-acting, developmental transcription factors. These findings have implications for understanding the maintenance of all long-lived cell types and the functional degeneration of neurons in the aging brain

    Antenatal isolated hydronephrosis associated with urinoma

    No full text
    Two cases of prenatally identified urinoma associated with an isolated hydronephrosis are presented, and the pathophysiology and prognosis of this rare condition are discussed. The presence in utero of a peri-renal collection associated with an isolated hydronephrosis seems to be a sign of significant renal dysplasia. These urinomas disappear spontaneously, thus drainage is not necessary, except in the case of compression of surrounding structures. The functional prognosis of these kidneys seems to be most unfavourable

    Evaluation of a shuttle DNP spectrometer by calculating the coupling and global enhancement factors of l-tryptophan.

    No full text
    A liquid state shuttle dynamic nuclear polarization (DNP) spectrometer is presented, featuring several technical modifications that increase stability and improve reproducibility. For the protons of l-tryptophan, the signal enhancement and the DNP spin properties, such as relaxation, were measured and compared with each other. The calculated coupling factors suggest that the proton accessibility for the polarizer molecule has an important influence on the DNP enhancement. In general, short proton spin longitudinal relaxation times without radical reduce the detectable enhancement by decreasing the leakage factor and increasing the relaxation losses during the course of the sample transfer. The usage of a global enhancement factor gives a more complete overview of the capabilities for the described experimental setup. Global enhancements of up to −4.2 for l-tryptophan protons are found compared to pure Boltzmann enhancements of up to −2.4
    • 

    corecore