18 research outputs found

    Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular jacobians of genus 2 curves

    Get PDF
    This paper provides empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves. The second of these conjectures relates six quantities associated to a Jacobian over the rational numbers. One of these six quantities is the size of the Shafarevich-Tate group. Unable to compute that, we computed the five other quantities and solved for the last one. In all 32 cases, the result is very close to an integer that is a power of 2. In addition, this power of 2 agrees with the size of the 2-torsion of the Shafarevich-Tate group, which we could compute

    The arithmetic of hyperelliptic curves

    Get PDF
    We summarise recent advances in techniques for solving Diophantine problems on hyperelliptic curves; in particular, those for finding the rank of the Jacobian, and the set of rational points on the curve

    On the invariants of the quotients of the Jacobian of a curve of genus 2

    No full text
    The original publication is available at www.springerlink.comInternational audienceLet C be a curve of genus 2 that admits a non-hyperelliptic involution. We show that there are at most 2 isomorphism classes of elliptic curves that are quotients of degree 2 of the Jacobian of C. Our proof is constructive, and we present explicit formulae, classified according to the involutions of C, that give the minimal polynomial of the j-invariant of these curves in terms of the moduli of C. The coefficients of these minimal polynomials are given as rational functions of the moduli

    Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves.

    No full text
    This paper provides empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves. The second of these conjectures relates six quantities associated to a Jacobian over the rational numbers. One of these six quantities is the size of the Shafarevich-Tate group. Unable to compute that, we computed the five other quantities and solved for the last one. In all 32 cases, the result is very close to an integer that is a power of 2. In addition, this power of 2 agrees with the size of the 2-torsion of the Shafarevich-Tate group, which we could compute

    Four-Dimensional GLV via the Weil Restriction

    No full text
    International audienceThe Gallant-Lambert-Vanstone (GLV) algorithm uses efficiently computable endomorphisms to accelerate the computation of scalar multiplication of points on an abelian variety. Freeman and Satoh proposed for cryptographic use two families of genus 2 curves defined over Fp which have the property that the corresponding Jacobians are (2,2)-isogenous over an extension field to a product of elliptic curves de fined over Fp2. We exploit the relationship between the endomorphism rings of isogenous abelian varieties to exhibit efficiently computable endomorphisms on both the genus 2 Jacobian and the elliptic curve. This leads to a four-dimensional GLV method on Freeman and Satoh's Jacobians and on two new families of elliptic curves de fined over Fp2
    corecore