30 research outputs found

    Determinants of SARS-CoV-2 receptor gene expression in upper and lower airways

    Get PDF
    The recent outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has led to a worldwide pandemic. One week after initial symptoms develop, a subset of patients progresses to severe disease, with high mortality and limited treatment options. To design novel interventions aimed at preventing spread of the virus and reducing progression to severe disease, detailed knowledge of the cell types and regulating factors driving cellular entry is urgently needed. Here we assess the expression patterns in genes required for COVID-19 entry into cells and replication, and their regulation by genetic, epigenetic and environmental factors, throughout the respiratory tract using samples collected from the upper (nasal) and lower airways (bronchi). Matched samples from the upper and lower airways show a clear increased expression of these genes in the nose compared to the bronchi and parenchyma. Cellular deconvolution indicates a clear association of these genes with the proportion of secretory epithelial cells. Smoking status was found to increase the majority of COVID-19 related genes including ACE2 and TMPRSS2 but only in the lower airways, which was associated with a significant increase in the predicted proportion of goblet cells in bronchial samples of current smokers. Both acute and second hand smoke were found to increase ACE2 expression in the bronchus. Inhaled corticosteroids decrease ACE2 expression in the lower airways. No significant effect of genetics on ACE2 expression was observed, but a strong association of DNA- methylation with ACE2 and TMPRSS2- mRNA expression was identified in the bronchus.</p

    Determinants of expression of SARS-CoV-2 entry-related genes in upper and lower airways.

    Get PDF
    Funder: Dutch Research Council (NWO)Funder: Cancer Research UK Cambridge CentreFunder: ATS Foundation/Boehringer Ingelheim Pharmaceuticals Inc. Research FellowshipFunder: The Netherlands Ministry of Spatial Planning, Housing, and the EnvironmentFunder: Chan Zuckerberg InitiativeFunder: The Netherlands Ministry of Health, Welfare, and SportFunder: Longfonds Junior FellowshipFunder: Cambridge BioresourceFunder: The Netherlands Organization for Health Research and DevelopmentFunder: Cambridge NIHR Biomedical Research CentreFunder: Parker B. Francis FellowshipFunder: China Scholarship Counci

    Deguelin Attenuates Reperfusion Injury and Improves Outcome after Orthotopic Lung Transplantation in the Rat

    Get PDF
    The main goal of adequate organ preservation is to avoid further cellular metabolism during the phase of ischemia. However, modern preservation solutions do rarely achieve this target. In donor organs hypoxia and ischemia induce a broad spectrum of pathologic molecular mechanisms favoring primary graft dysfunction (PGD) after transplantation. Increased hypoxia-induced transcriptional activity leads to increased vascular permeability which in turn is the soil of a reperfusion edema and the enhancement of a pro-inflammatory response in the graft after reperfusion. We hypothesize that inhibition of the respiration chain in mitochondria and thus inhibition of the hypoxia induced mechanisms might reduce reperfusion edema and consecutively improve survival in vivo. In this study we demonstrate that the rotenoid Deguelin reduces the expression of hypoxia induced target genes, and especially VEGF-A, dose-dependently in hypoxic human lung derived cells. Furthermore, Deguelin significantly suppresses the mRNA expression of the HIF target genes VEGF-A, the pro-inflammatory CXCR4 and ICAM-1 in ischemic lungs vs. control lungs. After lung transplantation, the VEGF-A induced reperfusion-edema is significantly lower in Deguelin-treated animals than in controls. Deguelin-treated rats exhibit a significantly increased survival-rate after transplantation. Additionally, a downregulation of the pro-inflammatory molecules ICAM-1 and CXCR4 and an increase in the recruitment of immunomodulatory monocytes (CD163+ and CD68+) to the transplanted organ involving the IL4 pathway was observed. Therefore, we conclude that ischemic periods preceding reperfusion are mainly responsible for the increased vascular permeability via upregulation of VEGF. Together with this, the resulting endothelial dysfunction also enhances inflammation and consequently lung dysfunction. Deguelin significantly decreases a VEGF-A induced reperfusion edema, induces the recruitment of immunomodulatory monocytes and thus improves organ function and survival after lung transplantation by interfering with hypoxia induced signaling

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar

    Hemostatic biomarkers and antithrombotic strategy in percutaneous left atrial interventions:State-of-the-art review

    No full text
    Atrial septal defect, persistent foramen ovale and the left atrial appendage are nowadays often percutaneously closed with implantable devices. These interventions may be complicated by thromboembolic events and the perfect post-procedural antithrombotic management is still under investigation. The mechanisms leading to left atrial device-related thrombus and thromboembolic complications are not fully understood. Biomarkers of coagulation activation are elevated following percutaneous device placement, peaking within one month and returning to baseline values after three months. By contrast, platelet reactivity shows no post-procedural increase. This suggests that an optimal antithrombotic regimen should perhaps include (oral) anticoagulation therapy rather than the currently more frequently prescribed antiplatelet-based regimen. Furthermore, biomarkers of endothelial activation, fibrinolysis, and on-treatment platelet reactivity may be of value in predicting device-related thrombus and bleeding and guide future medical strategy, facilitating personalized medicine

    Contrast-enhanced ultrasound imaging of the vasa vasorum : from early atherosclerosis to the identification of unstable plaques

    No full text
    Proliferation of the adventitial vasa vasorum (VV) is inherently linked with early atherosclerotic plaque development and vulnerability. Recently, direct visualization of arterial VV and intraplaque neovascularization has emerged as a new surrogate marker for the early detection of atherosclerotic disease. This clinical review focuses on contrast-enhanced ultrasound (CEUS) as a noninvasive application for identifying and quantifying carotid and coronary artery VV and intraplaque neovascularization. These novel approaches could potentially impact the clinician's ability to identify individuals with premature cardiovascular disease who are at high risk. Once clinically validated, the uses of CEUS may provide a method to noninvasively monitor therapeutic interventions. In the future, the therapeutic use of CEUS may include ultrasound-directed, site-specific therapies using microbubbles as vehicles for drug and gene delivery systems. The combined applications for diagnosis and therapy provide unique opportunities for clinicians to image and direct therapy for individuals with vulnerable lesions
    corecore