38,549 research outputs found
Gain without inversion in quantum systems with broken parities
For a quantum system with broken parity symmetry, selection rules can not
hold and cyclic transition structures are generated. With these
loop-transitions we discuss how to achieve inversionless gain of the probe
field by properly setting the control and auxiliary fields. Possible
implementations of our generic proposal with specific physical objects with
broken parities, e.g., superconducting circuits and chiral molecules, are also
discussed.Comment: 12 pages, 4 figure
Jaynes-Cummings Models with trapped electrons on liquid Helium
Jaynes-Cummings model is a typical model in quantum optics and has been
realized with various physical systems (e.g, cavity QED, trapped ions, and
circuit QED etc..) of two-level atoms interacting with quantized bosonic
fields. Here, we propose a new implementation of this model by using a single
classical laser beam to drive an electron floating on liquid Helium. Two lowest
levels of the {\it vertical} motion of the electron acts as a two-level "atom",
and the quantized vibration of the electron along one of the {\it parallel}
directions, e.g., -direction, serves the bosonic mode. These two degrees of
freedom of the trapped electron can be coupled together by using a classical
laser field. If the frequencies of the applied laser fields are properly set,
the desirable Jaynes-Cummings models could be effectively realized.Comment: 9 pages, 2 figure
An Analysis of the Matching Hypothesis in Networks
The matching hypothesis in social psychology claims that people are more
likely to form a committed relationship with someone equally attractive.
Previous works on stochastic models of human mate choice process indicate that
patterns supporting the matching hypothesis could occur even when similarity is
not the primary consideration in seeking partners. Yet, most if not all of
these works concentrate on fully-connected systems. Here we extend the analysis
to networks. Our results indicate that the correlation of the couple's
attractiveness grows monotonically with the increased average degree and
decreased degree diversity of the network. This correlation is lower in sparse
networks than in fully-connected systems, because in the former less attractive
individuals who find partners are likely to be coupled with ones who are more
attractive than them. The chance of failing to be matched decreases
exponentially with both the attractiveness and the degree. The matching
hypothesis may not hold when the degree-attractiveness correlation is present,
which can give rise to negative attractiveness correlation. Finally, we find
that the ratio between the number of matched couples and the size of the
maximum matching varies non-monotonically with the average degree of the
network. Our results reveal the role of network topology in the process of
human mate choice and bring insights into future investigations of different
matching processes in networks
Tunable one-dimensional microwave emissions from cyclic-transition three-level atoms
By strongly driving a cyclic-transition three-level artificial atom,
demonstrated by such as a flux-based superconducting circuit, we show that
coherent microwave signals can be excited along a coupled one-dimensional
transmission line. Typically, the intensity of the generated microwave is
tunable via properly adjusting the Rabi frequencies of the applied
strong-driving fields or introducing a probe field with the same frequency. In
practice, the system proposed here could work as an on-chip quantum device with
controllable atom-photon interaction to implement a total-reflecting mirror or
switch for the propagating probe field.Comment: 4 pages, 5 figure
The unified Skyrmion profiles and Static Properties of Nucleons
An unified approximated solution for symmetric Skyrmions was proposed for the
SU(2) Skyrme model for baryon numbers up to 8,which take the hybrid form of a
kink-like solution and that given by the instanton method. The Skyrmion
profiles are examined by computing lowest soliton energy as well as the static
properties of nucleons within the framework of collective quantization, with a
good agreement with the exact numeric results. The comparisons with the
previous computations as well as the experimental data are also given.Comment: 6 pages, 3 figures, 3 tables, Created by LaTex Syste
A Morphological Approach to the Pulsed Emission from Soft Gamma Repeaters
We present a geometrical methodology to interpret the periodical light curves
of Soft Gamma Repeaters based on the magnetar model and the numerical
arithmetic of the three-dimensional magnetosphere model for the young pulsars.
The hot plasma released by the star quake is trapped in the magnetosphere and
photons are emitted tangent to the local magnetic field lines. The variety of
radiation morphologies in the burst tails and the persistent stages could be
well explained by the trapped fireballs on different sites inside the closed
field lines. Furthermore, our numerical results suggests that the pulse profile
evolution of SGR 1806-20 during the 27 December 2004 giant flare is due to a
lateral drift of the emitting region in the magnetosphere.Comment: 7 figures, accepted by Ap
- …
