2,286 research outputs found
Performances of Anode-resistive Micromegas for HL-LHC
Micromegas technology is a promising candidate to replace Atlas forward muon
chambers -tracking and trigger- for future HL-LHC upgrade of the experiment.
The increase on background and pile-up event probability requires detector
performances which are currently under studies in intensive RD activities.
We studied performances of four different resistive Micromegas detectors with
different read-out strip pitches. These chambers were tested using \sim120 GeV
momentum pions, at H6 CERN-SPS beam line in autumn 2010. For a strip pitch 500
micrometers we measure a resolution of \sim90 micrometers and a efficiency of
~98%. The track angle effect on the efficiency was also studied. Our results
show that resistive techniques induce no degradation on the efficiency or
resolution, with respect to the standard Micromegas. In some configuration the
resistive coating is able to reduce the discharge currents at least by a factor
of 100.Micromegas technology is a promising candidate to replace Atlas forward
muon chambers -tracking and trigger- for future HL-LHC upgrade of the
experiment. The increase on background and pile-up event probability requires
detector performances which are currently under studies in intensive RD
activities. We studied performances of four different resistive Micromegas
detectors with different read-out strip pitches. These chambers were tested
using \sim120 GeV momentum pions, at H6 CERN-SPS beam line in autumn 2010. For
a strip pitch 500 micrometers we measure a resolution of \sim90 micrometers and
a efficiency of \sim98%. The track angle effect on the efficiency was also
studied. Our results show that resistive techniques induce no degradation on
the efficiency or resolution, with respect to the standard Micromegas. In some
configuration the resistive coating is able to reduce the discharge currents at
least by a factor of 100.Comment: "Presented at the 2011 Hadron Collider Physics symposium (HCP-2011),
Paris, France, November 14-18 2011, 3 pages, 6 figures.
Neutron imaging with a Micromegas detector
The micropattern gaseous detector Micromegas has been developed for several
years in Saclay and presents good performance for neutron detection. A
prototype for neutron imaging has been designed and new results obtained in
thermal neutron beams are presented. Based on previous results demonstrating a
good 1D spatial resolution, a tomographic image of a multiwire cable has been
performed using a 1D Micromegas prototype. The number of pillars supporting the
micromesh is too large and leads to local losses of efficiency that distort the
tomographic reconstruction. Nevertheless, this first tomographic image achieved
with this kind of detector is very encouraging. The next worthwhile development
for neutron imaging is to achieve a bi-dimensional detector, which is presented
in the second part of this study. The purpose of measurements was to
investigate various operational parameters to optimize the spatial resolution.
Through these measurements the optimum spatial resolution has been found to be
around 160 microns (standard deviation) using Micromegas operating in double
amplification mode. Several 2D imaging tests have been carried out. Some of
these results have revealed fabrication defects that occurred during the
manufacture of Micromegas and that are limiting the full potential of the
present neutron imaging system.Comment: 6 pages, 10 figures, presented at IEEE 2004 conference in Roma, Ital
Aging studies of Micromegas prototypes for the HL-LHC
The micromegas technology is a promising candidate to replace the forward
muon chambers for the luminosity upgrade of ATLAS. The LHC accelerator
luminosity will be five times the nominal one, increasing background and
pile-up event probability. This requires detector performances which are
currently under study in intensive R&D activities. Aging is one of the key
issues for a high-luminosity LHC application. For this reason, we study the
properties of resistive micromegas detectors under intense X-ray radiation and
under thermal neutrons in different CEA-Saclay facilities. This study is
complementary to those already performed using fast neutrons.Comment: Proceedings of the MPGD2011 Conferenc
Recommended from our members
The Lensed Lyman-Alpha MUSE Arcs Sample (LLAMAS): I. Characterisation of extended Lyman-alpha halos and spatial offsets
Aims. We present the Lensed Lyman-Alpha MUSE Arcs Sample (LLAMAS) selected from MUSE and HST observations of 17 lensing clusters. The sample consists of 603 continuum-faint (23 < MUV<-14) lensed Lyman-α emitters (producing 959 images) with secure spectroscopic redshifts between 2.9 and 6.7. Combining the power of cluster magnification with 3D spectroscopic observations, we were able to reveal the resolved morphological properties of 268 Lyman-α emitters. Methods. We used a forward-modeling approach to model both Lyman-α and rest-frame UV continuum emission profiles in the source plane and measure spatial extent, ellipticity, and spatial offsets between UV and Lyman-α emission. Results. We find a significant correlation between UV continuum and Lyman-α spatial extent. Our characterization of the Lyman-α halos indicates that the halo size is linked to the physical properties of the host galaxy (SFR, Lyman-α equivalent width, Lyman-α line FWHM). We find that 48% of Lyman-α halos are best fit by an elliptical emission distribution with a median axis ratio of q =0.48. We observe that 60% of galaxies detected both in UV and Lyman-α emission show a significant spatial offset (ÎLyα-UV). We measure a median offset of ÎLyα-UV=0.58± 0.14 kpc for the entire sample. By comparing the spatial offset values with the size of the UV component, we show that 40% of the offsets could be due to star-forming sub-structures in the UV component, while the larger offsets (60%) are more likely due to greater-distance processes such as scattering effects inside the circumgalactic medium or emission from faint satellites or merging galaxies. Comparisons with a zoom-in radiative hydrodynamics simulation of a typical Lyman-α emitting galaxy show a very good agreement with LLAMAS galaxies and indicate that bright star-formation clumps and satellite galaxies could produce a similar spatial offset distribution
Sources of pro-cyclicality in east Asian financial systems
Procyclicality is a normal feature of economic systems, but financial sector
weaknesses can exacerbate it sufficiently to pose a threat to macroeconomic and financial
stability. These include shortcomings in bank risk management and governance, in
supervision and in terms of dependence on volatile sources of funds. The paper tests
econometrically for the importance of such features leading to pro-cyclicality in the financial
systems of 11 East Asian countries. This analysis makes it possible to identify specific policy
measures for East Asian countries that could limit the extent to which financial systems
exacerbate pro-cyclicality
The silicon micro-strip detector plane for the LOFT/Wide Field Monitor
The main objective of the Wide Field Monitor (WFM) on the LOFT mission is to
provide unambiguous detection of the high-energy sources in a large field of
view, in order to support science operations of the LOFT primary instrument,
the LAD. The monitor will also provide by itself a large number of results on
the timing and spectral behaviour of hundreds of galactic compact objects,
Active Galactic Nuclei and Gamma-Ray Bursts. The WFM is based on the coded
aperture concept where a position sensitive detector records the shadow of a
mask projected by the celestial sources. The proposed WFM detector plane, based
on Double Sided micro-Strip Silicon Detectors (DSSD), will allow proper
2-dimensional recording of the projected shadows. Indeed the positioning of the
photon interaction in the detector with equivalent fine resolution in both
directions insures the best imaging capability compatible with the allocated
budgets for this telescope on LOFT. We will describe here the overall
configuration of this 2D-WFM and the design and characteristics of the DSSD
detector plane including its imaging and spectral performances. We will also
present a number of simulated results discussing the advantages that this
configuration offers to LOFT. A DSSD-based WFM will in particular reduce
significantly the source confusion experienced by the WFM in crowded regions of
the sky like the Galactic Center and will in general increase the observatory
science capability of the mission.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-89, 201
- âŠ