9,008 research outputs found
The effect of height and density of sex pheromone traps on captures of male fruittree leafroller, Archips argyrospilus and threelined leafroller, Pandemis limitata (Lepid.: Tortricidae)
When sex pheromone traps in the upper third of a standard apple tree were compared with traps at head height, the upper traps captured far more fruittree leafroller moths (<i>Archips argyrospilus</i> (Walker) than the lower traps. The results with threelined leafroller (<i>Pandemis limitata</i> (Rob.) were reversed: traps at head height captured nearly twice as many moths as traps in the upper portion of a tree. Trap captures increased with trap/area up to 1 trap/ha. This density is probably sufficient for monitoring purposes
Angular Normal Modes of a Circular Coulomb Cluster
We investigate the angular normal modes for small oscillations about an
equilibrium of a single-component coulomb cluster confined by a radially
symmetric external potential to a circle. The dynamical matrix for this system
is a Laplacian symmetrically circulant matrix and this result leads to an
analytic solution for the eigenfrequencies of the angular normal modes. We also
show the limiting dependence of the largest eigenfrequency for large numbers of
particles
Gaps below strange star crusts
The gap caused by a strong electric field between the quark surface and
nuclear crust of a strange star is studied in an improved model including
gravity and pressure as well as electrostatic forces. The transition from gap
to crust is followed in detail. The properties of the gap are investigated for
a wide range of parameters assuming both color-flavor locked and non
color-flavor locked strange star cores. The maximally allowed crust density is
generally lower than that of neutron drip. Finite temperature is shown to
increase the gap width, but the effect is significant only at extreme
temperatures. Analytical approximations are derived and shown to provide useful
fits to the numerical results.Comment: 12 pages incl. 14 figures. To appear in Physical Review
Charge order in Magnetite. An LDA+ study
The electronic structure of the monoclinic structure of FeO is
studied using both the local density approximation (LDA) and the LDA+. The
LDA gives only a small charge disproportionation, thus excluding that the
structural distortion should be sufficient to give a charge order. The LDA+
results in a charge disproportion along the c-axis in good agreement with the
experiment. We also show how the effective can be calculated within the
augmented plane wave methods
High-order harmonic generation from polyatomic molecules including nuclear motion and a nuclear modes analysis
We present a generic approach for treating the effect of nuclear motion in
the high-order harmonic generation from polyatomic molecules. Our procedure
relies on a separation of nuclear and electron dynamics where we account for
the electronic part using the Lewenstein model and nuclear motion enters as a
nuclear correlation function. We express the nuclear correlation function in
terms of Franck-Condon factors which allows us to decompose nuclear motion into
modes and identify the modes that are dominant in the high-order harmonic
generation process. We show results for the isotopes CH and CD and
thereby provide direct theoretical support for a recent experiment [Baker {\it
et al.}, Science {\bf 312}, 424 (2006)] that uses high-order harmonic
generation to probe the ultra-fast structural nuclear rearrangement of ionized
methane.Comment: 6 pages, 6 figure
How to identify a Strange Star
Contrary to young neutron stars, young strange stars are not subject to the
r-mode instability which slows rapidly rotating, hot neutron stars to rotation
periods near 10 ms via gravitational wave emission. Young millisecond pulsars
are therefore likely to be strange stars rather than neutron stars, or at least
to contain significant quantities of quark matter in the interior.Comment: 4 pages, 1 figur
Colour-singlet strangelets at finite temperature
Considering massless and quarks, and massive (150 MeV) quarks in
a bag with the bag pressure constant MeV, a colour-singlet
grand canonical partition function is constructed for temperatures
MeV. Then the stability of finite size strangelets is studied minimizing the
free energy as a function of the radius of the bag. The colour-singlet
restriction has several profound effects when compared to colour unprojected
case: (1) Now bulk energy per baryon is increased by about MeV making the
strange quark matter unbound. (2) The shell structures are more pronounced
(deeper). (3) Positions of the shell closure are shifted to lower -values,
the first deepest one occuring at , famous -particle ! (4) The shell
structure at vanishes only at MeV, though for higher
-values it happens so at MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from
first Autho
- …