417 research outputs found

    SPECTROPHOTOMETRIC STUDIES OF THE EFFECTS OF NITROGEN ON SOYBEAN NODULE EXTRACTS

    Full text link

    Correlations in Ising chains with non-integrable interactions

    Full text link
    Two-spin correlations generated by interactions which decay with distance r as r^{-1-sigma} with -1 <sigma <0 are calculated for periodic Ising chains of length L. Mean-field theory indicates that the correlations, C(r,L), diminish in the thermodynamic limit L -> \infty, but they contain a singular structure for r/L -> 0 which can be observed by introducing magnified correlations, LC(r,L)-\sum_r C(r,L). The magnified correlations are shown to have a scaling form F(r/L) and the singular structure of F(x) for x->0 is found to be the same at all temperatures including the critical point. These conclusions are supported by the results of Monte Carlo simulations for systems with sigma =-0.50 and -0.25 both at the critical temperature T=Tc and at T=2Tc.Comment: 13 pages, latex, 5 eps figures in a separate uuencoded file, to appear in Phys.Rev.

    Respiration and oxygen transport in soybean nodules

    Full text link
    The respiration rate of individual soybean ( Glycine max Merr.) nodules was measured as a function of pO 2 and temperature. At 23°, as the pO 2 was increased from 0.1 to 0.9 atm, there was a linear increase in respiration rate. At 13°, similar results were obtained, except that there was an abrupt saturation of respiration at approximately 0.5 atm pO 2 . When measurements were made on the same nodule, the rate of increase in respiration with pO 2 was the same at 13° and 23°. Additional results were that 5% CO in the gas phase had no effect on respiration, except for a small decrease in the pO 2 at which respiration became saturated. Also, nodules still attached to the soybean root displayed the same respiratory behavior as detached nodules. A model for oxygen transport in the nodule is presented which explains these results quantitatively. The essence of the model is that the respiration rate of the central tissue of the nodule is almost entirely determined by the rate of oxygen diffusion to the respiratory enzymes. Evidence is given that the nodule cortex is the site of almost all of the resistance to oxygen diffusion within the nodule.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47460/1/425_2004_Article_BF00388605.pd

    Canonical Solution of Classical Magnetic Models with Long-Range Couplings

    Full text link
    We study the canonical solution of a family of classical nvectorn-vector spin models on a generic dd-dimensional lattice; the couplings between two spins decay as the inverse of their distance raised to the power α\alpha, with α<d\alpha<d. The control of the thermodynamic limit requires the introduction of a rescaling factor in the potential energy, which makes the model extensive but not additive. A detailed analysis of the asymptotic spectral properties of the matrix of couplings was necessary to justify the saddle point method applied to the integration of functions depending on a diverging number of variables. The properties of a class of functions related to the modified Bessel functions had to be investigated. For given nn, and for any α\alpha, dd and lattice geometry, the solution is equivalent to that of the α=0\alpha=0 model, where the dimensionality dd and the geometry of the lattice are irrelevant.Comment: Submitted for publication in Journal of Statistical Physic

    Evidence of exactness of the mean field theory in the nonextensive regime of long-range spin models

    Full text link
    The q-state Potts model with long-range interactions that decay as 1/r^alpha subjected to an uniform magnetic field on d-dimensional lattices is analized for different values of q in the nonextensive regime (alpha between 0 and d). We also consider the two dimensional antiferromagnetic Ising model with the same type of interactions. The mean field solution and Monte Carlo calculations for the equations of state for these models are compared. We show that, using a derived scaling which properly describes the nonextensive thermodynamic behaviour, both types of calculations show an excellent agreement in all the cases here considered, except for alpha=d. These results allow us to extend to nonextensive magnetic models a previous conjecture which states that the mean field theory is exact for the Ising one.Comment: 10 pages, 4 figure

    A generalized spherical version of the Blume-Emery-Griffits model with ferromagnetic and antiferromagnetic interactions

    Full text link
    We have investigated analitycally the phase diagram of a generalized spherical version of the Blume-Emery-Griffiths model that includes ferromagnetic or antiferromagnetic spin interactions as well as quadrupole interactions in zero and nonzero magnetic field. We show that in three dimensions and zero magnetic field a regular paramagnetic-ferromagnetic (PM-FM) or a paramagnetic-antiferromagnetic (PM-AFM) phase transition occurs whenever the magnetic spin interactions dominate over the quadrupole interactions. However, when spin and quadrupole interactions are important, there appears a reentrant FM-PM or AFM-PM phase transition at low temperatures, in addition to the regular PM-FM or PM-AFM phase transitions. On the other hand, in a nonzero homogeneous external magnetic field HH, we find no evidence of a transition to the state with spontaneous magnetization for FM interactions in three dimensions. Nonethelesss, for AFM interactions we do get a scenario similar to that described above for zero external magnetic field, except that the critical temperatures are now functions of HH. We also find two critical field values, Hc1H_{c1}, at which the reentrance phenomenon dissapears and Hc2H_{c2} (Hc10.5Hc2H_{c1}\approx 0.5H_{c2}), above which the PM-AFM transition temperature vanishes.Comment: 21 pages, 6 figs. Title changed, abstract and introduction as well as section IV were rewritten relaxing the emphasis on spin S=1 and Figs. 5 an 6 were improved in presentation. However, all the results remain valid. Accepted for publication in Phys. Rev.

    Phase Separation and Coarsening in One-Dimensional Driven Diffusive Systems: Local Dynaimcs Leading to Long-Range Hamiltonians

    Full text link
    A driven system of three species of particle diffusing on a ring is studied in detail. The dynamics is local and conserves the three densities. A simple argument suggesting that the model should phase separate and break the translational symmetry is given. We show that for the special case where the three densities are equal the model obeys detailed balance and the steady-state distribution is governed by a Hamiltonian with asymmetric long-range interactions. This provides an explicit demonstration of a simple mechanism for breaking of ergodicity in one dimension. The steady state of finite-size systems is studied using a generalized matrix product ansatz. The coarsening process leading to phase separation is studied numerically and in a mean-field model. The system exhibits slow dynamics due to trapping in metastable states whose number is exponentially large in the system size. The typical domain size is shown to grow logarithmically in time. Generalizations to a larger number of species are discussed.Comment: Revtex, 29 Pages, 7 figures, uses epsf.sty, submitted to Phys. Rev.

    Ferroelectric and Dipolar Glass Phases of Non-Crystalline Systems

    Full text link
    In a recent letter [Phys. Rev. Lett. {\bf 75}, 2360 (1996)] we briefly discussed the existence and nature of ferroelectric order in positionally disordered dipolar materials. Here we report further results and give a complete description of our work. Simulations of randomly frozen and dynamically disordered dipolar soft spheres are used to study ferroelectric ordering in non-crystalline systems. We also give a physical interpretation of the simulation results in terms of short- and long-range interactions. Cases where the dipole moment has 1, 2, and 3 components (Ising, XY and XYZ models, respectively) are considered. It is found that the Ising model displays ferroelectric phases in frozen amorphous systems, while the XY and XYZ models form dipolar glass phases at low temperatures. In the dynamically disordered model the equations of motion are decoupled such that particle translation is completely independent of the dipolar forces. These systems spontaneously develop long-range ferroelectric order at nonzero temperature despite the absence of any fined-tuned short-range spatial correlations favoring dipolar order. Furthermore, since this is a nonequilibrium model we find that the paraelectric to ferroelectric transition depends on the particle mass. For the XY and XYZ models, the critical temperatures extrapolate to zero as the mass of the particle becomes infinite, whereas, for the Ising model the critical temperature is almost independent of mass and coincides with the ferroelectric transition found for the randomly frozen system at the same density. Thus in the infinite mass limit the results of the frozen amorphous systems are recovered.Comment: 25 pages (LATEX, no macros). 11 POSTSCRIPT figures enclosed. Submitted to Phisical Review E. Contact: [email protected]
    corecore