2,146 research outputs found
Month-Timescale Optical Variability in the M87 Jet
A previously inconspicuous knot in the M87 jet has undergone a dramatic
outburst and now exceeds the nucleus in optical and X-ray luminosity.
Monitoring of M87 with the Hubble Space Telescope and Chandra X-ray Observatory
during 2002-2003, has found month-timescale optical variability in both the
nucleus and HST-1, a knot in the jet 0.82'' from the nucleus. We discuss the
behavior of the variability timescales as well as spectral energy distribution
of both components. In the nucleus, we see nearly energy-independent
variability behavior. Knot HST-1, however, displays weak energy dependence in
both X-ray and optical bands, but with nearly comparable rise/decay timescales
at 220 nm and 0.5 keV. The flaring region of HST-1 appears stationary over
eight months of monitoring. We consider various emission models to explain the
variability of both components. The flares we see are similar to those seen in
blazars, albeit on longer timescales, and so could, if viewed at smaller
angles, explain the extreme variability properties of those objects.Comment: 4 pages, 3 figures, ApJ Lett., in pres
Ultraviolet HST Observations of the Jet in M87
We present new ultraviolet photometry of the jet in M87 obtained from HST
WFPC2 imaging. We combine these ultraviolet data with previously published
photometry for the knots of the jet in radio, optical, and X-ray, and fit three
theoretical synchrotron models to the full data set. The synchrotron models
consistently overpredict the flux in the ultraviolet when fit over the entire
dataset. We show that if the fit is restricted to the radio through ultraviolet
data, the synchrotron models can provide a good match to the data. The break
frequencies of these fits are much lower than previous estimates. The implied
synchrotron lifetimes for the bulk of the emitting population are longer than
earlier work, but still much shorter than the estimated kinematic lifetimes of
the knots. The observed X-ray flux cannot be successfully explained by the
simple synchrotron models that fit the ultraviolet and optical fluxes. We
discuss the possible implications of these results for the physical properties
of the M87 jet. We also observe increased flux for the HST-1 knot that is
consistent with previous results for flaring. This observation fills in a
significant gap in the time coverage early in the history of the flare, and
therefore sets constraints on the initial brightening of the flare.Comment: 14 pages, 2 figures, Accepted for publication in ApJ, changed
lightcurve and caption in Figure
A Modified Synchrotron Model for Knots in the M87 Jet
For explaining the broadband spectral shape of knots in the M87 jet from
radio through optical to X-ray, we propose a modified synchrotron model that
considers the integrated effect of particle injection from different
acceleration sources in the thin acceleration region. This results in two break
frequencies at two sides of which the spectral index of knots in the M87 jet
changes. We discuss the possible implications of these results for the physical
properties in the M87 jet. The observed flux of the knots in the M87 jet from
radio to X-ray can be satisfactorily explained by the model, and the predicted
spectra from ultraviolet to X-ray could be further tested by future
observations. The model implies that the knots D, E, F, A, B, and C1 are
unlikely to be the candidate for the TeV emission recently detected in M87.Comment: 12 pages, 1 figure, 2 tables, Accepted for publication in ApJ Letter
The Mid-Infrared Emission of M87
We discuss Subaru and Spitzer Space Telescope imaging and spectroscopy of M87
in the mid-infrared from 5-35 um. These observations allow us to investigate
mid-IR emission mechanisms in the core of M87 and to establish that the
flaring, variable jet component HST-1 is not a major contributor to the mid-IR
flux. The Spitzer data include a high signal-to-noise 15-35 m spectrum of
the knot A/B complex in the jet, which is consistent with synchrotron emission.
However, a synchrotron model cannot account for the observed {\it nuclear}
spectrum, even when contributions from the jet, necessary due to the degrading
of resolution with wavelength, are included. The Spitzer data show a clear
excess in the spectrum of the nucleus at wavelengths longer than 25 um, which
we model as thermal emission from cool dust at a characteristic temperature of
55 \pm 10 K, with an IR luminosity \sim 10^{39} {\rm ~erg ~s^{-1}}. Given
Spitzer's few-arcsecond angular resolution, the dust seen in the nuclear
spectrum could be located anywhere within ~5'' (390 pc) of the nucleus. In any
case, the ratio of AGN thermal to bolometric luminosity indicates that M87 does
not contain the IR-bright torus that classical unified AGN schemes invoke.
However, this result is consistent with theoretical predictions for
low-luminosity AGNsComment: 9 pages, 7 figures, ApJ, in pres
Cross-linguistic study of vocal pathology: perceptual features of spasmodic dysphonia in French-speaking subjects
Clinical characterisation of Spasmodic Dysphonia of the adductor type (SD) in French speakers by Klap and colleagues (1993) appears to differ from that of SD in English. This perceptual analysis aims to describe the phonetic features of French SD. A video of 6 French speakers with SD supplied by Klap and colleagues was analysed for frequency of phonatory breaks, pitch breaks, harshness, creak, breathiness and falsetto voice, rate of production, and quantity of speech output. In contrast to English SD, the French speaking SD patients demonstrated no evidence pitch breaks, but phonatory breaks, harshness and breathiness were prominent features. This verifies the French authors’ (1993) clinical description. These findings suggest that phonetic properties of a specific language may affect the manifestation of pathology in neurogenic voice disorders
A Flare in the Jet of Pictor A
A Chandra X-ray imaging observation of the jet in Pictor A showed a feature
that appears to be a flare that faded between 2000 and 2002. The feature was
not detected in a follow-up observation in 2009. The jet itself is over 150 kpc
long and a kpc wide, so finding year-long variability is surprising. Assuming a
synchrotron origin of the observed high-energy photons and a minimum energy
condition for the outflow, the synchrotron loss time of the X-ray emitting
electrons is of order 1200 yr, which is much longer than the observed
variability timescale. This leads to the possibility that the variable X-ray
emission arises from a very small sub-volume of the jet, characterized by
magnetic field that is substantially larger than the average over the jet.Comment: 12 pages, 3 figures, to appear in Ap. J. Letter
Probing the origin of VHE emission from M 87 with MWL observations in 2010
The large majority of extragalactic very high energy (VHE; E>100 GeV) sources
belongs to the class of active galactic nuclei (AGN), in particular the BL Lac
sub-class. AGNs are characterized by an extremely bright and compact emission
region, powered by a super-massive black hole (SMBH) and an accretion disk, and
relativistic outflows (jets) detected all across the electro-magnetic spectrum.
In BL Lac sources the jet axis is oriented close to the line of sight, giving
rise to a relativistic boosting of the emission. In radio galaxies, on the
other hand, the jet makes a larger angle to the line of sight allowing to
resolve the central core and the jet in great details. The giant radio galaxy M
87 with its proximity (1 6Mpc) and its very massive black hole ((3-6) x 10^9
M_solar) provides a unique laboratory to investigate VHE emission in such
objects and thereby probe particle acceleration to relativistic energies near
SMBH and in jets. M 87 has been established as a VHE emitter since 2005. The
VHE emission displays strong variability on time-scales as short as a day. It
has been subject of a large joint VHE and multi-wavelength (MWL) monitoring
campaign in 2008, where a rise in the 43 GHz VLBA radio emission of the
innermost region (core) was found to coincide with a flaring activity at VHE.
This had been interpreted as a strong indication that the VHE emission is
produced in the direct vicinity of the SMBH black hole. In 2010 again a flare
at VHE was detected triggering further MWL observations with the VLBA, Chandra,
and other instruments. At the same time M 87 was also observed with the
Fermi-LAT telescope at GeV energies and the European VLBI Network (EVN). In
this contribution preliminary results from the campaign will be presented.Comment: 5 pages, 2 figures, in the proceedings of the "International Workshop
on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland
Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume
355, 201
Optical and Radio Polarimetry of the M87 Jet at 0.2" Resolution
We discuss optical (HST/WFPC2 F555W) and radio (15 GHz VLA) polarimetry
observations of the M87 jet taken during 1994-1995. Many knot regions are very
highly polarized (, approaching the theoretical maximum for
optically thin synchrotron radiation), suggesting highly ordered magnetic
fields. High degrees of polarization are also observed in interknot regions.
While the optical and radio polarization maps share many similarities, we
observe significant differences between the radio and optical polarized
structures, particularly for bright knots in the inner jet, giving us important
insight into the jet's radial structure. Unlike in the radio, the optical
magnetic field position angle becomes perpendicular to the jet at the upstream
ends of knots HST-1, D, E and F. Moreover, the optical polarization decreases
markedly at the position of the flux maxima in these knots. In contrast, the
magnetic field position angle observed in the radio remains parallel to the jet
in most of these regions, and the decreases in radio polarization are smaller.
More minor differences are seen in other jet regions. Many of the differences
between optical and radio polarimetry results can be explained in terms of a
model whereby shocks occur in the jet interior, where higher-energy electrons
are concentrated and dominate both polarized and unpolarized emissions in the
optical, while the radio maps show strong contributions from lower-energy
electrons in regions with {\bf B} parallel, near the jet surface.Comment: 28 pages, 7 figures; accepted for publication in AJ (May 1999
Mid-infrared imaging- and spectro-polarimetric subarcsecond observations of NGC 1068
We present sub-arcsecond 7.513 m imaging- and spectro-polarimetric
observations of NGC 1068 using CanariCam on the 10.4-m Gran Telescopio
CANARIAS. At all wavelengths, we find:
(1) A 90 60 pc extended polarized feature in the northern ionization
cone, with a uniform 44 polarization angle. Its polarization
arises from dust and gas emission in the ionization cone, heated by the active
nucleus and jet, and further extinguished by aligned dust grains in the host
galaxy. The polarization spectrum of the jet-molecular cloud interaction at
24 pc from the core is highly polarized, and does not show a silicate
feature, suggesting that the dust grains are different from those in the
interstellar medium.
(2) A southern polarized feature at 9.6 pc from the core. Its
polarization arises from a dust emission component extinguished by a large
concentration of dust in the galaxy disc. We cannot distinguish between dust
emission from magnetically aligned dust grains directly heated by the jet close
to the core, and aligned dust grains in the dusty obscuring material
surrounding the central engine. Silicate-like grains reproduce the polarized
dust emission in this feature, suggesting different dust compositions in both
ionization cones.
(3) An upper limit of polarization degree of 0.3 per cent in the core. Based
on our polarization model, the expected polarization of the obscuring dusty
material is 0.1 per cent in the 813 m wavelength range. This
low polarization may be arising from the passage of radiation through aligned
dust grains in the shielded edges of the clumps.Comment: 17 pages, 10 figures, accepted for publication at MNRA
- …