2,146 research outputs found

    Month-Timescale Optical Variability in the M87 Jet

    Full text link
    A previously inconspicuous knot in the M87 jet has undergone a dramatic outburst and now exceeds the nucleus in optical and X-ray luminosity. Monitoring of M87 with the Hubble Space Telescope and Chandra X-ray Observatory during 2002-2003, has found month-timescale optical variability in both the nucleus and HST-1, a knot in the jet 0.82'' from the nucleus. We discuss the behavior of the variability timescales as well as spectral energy distribution of both components. In the nucleus, we see nearly energy-independent variability behavior. Knot HST-1, however, displays weak energy dependence in both X-ray and optical bands, but with nearly comparable rise/decay timescales at 220 nm and 0.5 keV. The flaring region of HST-1 appears stationary over eight months of monitoring. We consider various emission models to explain the variability of both components. The flares we see are similar to those seen in blazars, albeit on longer timescales, and so could, if viewed at smaller angles, explain the extreme variability properties of those objects.Comment: 4 pages, 3 figures, ApJ Lett., in pres

    Ultraviolet HST Observations of the Jet in M87

    Full text link
    We present new ultraviolet photometry of the jet in M87 obtained from HST WFPC2 imaging. We combine these ultraviolet data with previously published photometry for the knots of the jet in radio, optical, and X-ray, and fit three theoretical synchrotron models to the full data set. The synchrotron models consistently overpredict the flux in the ultraviolet when fit over the entire dataset. We show that if the fit is restricted to the radio through ultraviolet data, the synchrotron models can provide a good match to the data. The break frequencies of these fits are much lower than previous estimates. The implied synchrotron lifetimes for the bulk of the emitting population are longer than earlier work, but still much shorter than the estimated kinematic lifetimes of the knots. The observed X-ray flux cannot be successfully explained by the simple synchrotron models that fit the ultraviolet and optical fluxes. We discuss the possible implications of these results for the physical properties of the M87 jet. We also observe increased flux for the HST-1 knot that is consistent with previous results for flaring. This observation fills in a significant gap in the time coverage early in the history of the flare, and therefore sets constraints on the initial brightening of the flare.Comment: 14 pages, 2 figures, Accepted for publication in ApJ, changed lightcurve and caption in Figure

    A Modified Synchrotron Model for Knots in the M87 Jet

    Full text link
    For explaining the broadband spectral shape of knots in the M87 jet from radio through optical to X-ray, we propose a modified synchrotron model that considers the integrated effect of particle injection from different acceleration sources in the thin acceleration region. This results in two break frequencies at two sides of which the spectral index of knots in the M87 jet changes. We discuss the possible implications of these results for the physical properties in the M87 jet. The observed flux of the knots in the M87 jet from radio to X-ray can be satisfactorily explained by the model, and the predicted spectra from ultraviolet to X-ray could be further tested by future observations. The model implies that the knots D, E, F, A, B, and C1 are unlikely to be the candidate for the TeV emission recently detected in M87.Comment: 12 pages, 1 figure, 2 tables, Accepted for publication in ApJ Letter

    The Mid-Infrared Emission of M87

    Get PDF
    We discuss Subaru and Spitzer Space Telescope imaging and spectroscopy of M87 in the mid-infrared from 5-35 um. These observations allow us to investigate mid-IR emission mechanisms in the core of M87 and to establish that the flaring, variable jet component HST-1 is not a major contributor to the mid-IR flux. The Spitzer data include a high signal-to-noise 15-35 μ\mum spectrum of the knot A/B complex in the jet, which is consistent with synchrotron emission. However, a synchrotron model cannot account for the observed {\it nuclear} spectrum, even when contributions from the jet, necessary due to the degrading of resolution with wavelength, are included. The Spitzer data show a clear excess in the spectrum of the nucleus at wavelengths longer than 25 um, which we model as thermal emission from cool dust at a characteristic temperature of 55 \pm 10 K, with an IR luminosity \sim 10^{39} {\rm ~erg ~s^{-1}}. Given Spitzer's few-arcsecond angular resolution, the dust seen in the nuclear spectrum could be located anywhere within ~5'' (390 pc) of the nucleus. In any case, the ratio of AGN thermal to bolometric luminosity indicates that M87 does not contain the IR-bright torus that classical unified AGN schemes invoke. However, this result is consistent with theoretical predictions for low-luminosity AGNsComment: 9 pages, 7 figures, ApJ, in pres

    Cross-linguistic study of vocal pathology: perceptual features of spasmodic dysphonia in French-speaking subjects

    Get PDF
    Clinical characterisation of Spasmodic Dysphonia of the adductor type (SD) in French speakers by Klap and colleagues (1993) appears to differ from that of SD in English. This perceptual analysis aims to describe the phonetic features of French SD. A video of 6 French speakers with SD supplied by Klap and colleagues was analysed for frequency of phonatory breaks, pitch breaks, harshness, creak, breathiness and falsetto voice, rate of production, and quantity of speech output. In contrast to English SD, the French speaking SD patients demonstrated no evidence pitch breaks, but phonatory breaks, harshness and breathiness were prominent features. This verifies the French authors’ (1993) clinical description. These findings suggest that phonetic properties of a specific language may affect the manifestation of pathology in neurogenic voice disorders

    A Flare in the Jet of Pictor A

    Get PDF
    A Chandra X-ray imaging observation of the jet in Pictor A showed a feature that appears to be a flare that faded between 2000 and 2002. The feature was not detected in a follow-up observation in 2009. The jet itself is over 150 kpc long and a kpc wide, so finding year-long variability is surprising. Assuming a synchrotron origin of the observed high-energy photons and a minimum energy condition for the outflow, the synchrotron loss time of the X-ray emitting electrons is of order 1200 yr, which is much longer than the observed variability timescale. This leads to the possibility that the variable X-ray emission arises from a very small sub-volume of the jet, characterized by magnetic field that is substantially larger than the average over the jet.Comment: 12 pages, 3 figures, to appear in Ap. J. Letter

    Probing the origin of VHE emission from M 87 with MWL observations in 2010

    Full text link
    The large majority of extragalactic very high energy (VHE; E>100 GeV) sources belongs to the class of active galactic nuclei (AGN), in particular the BL Lac sub-class. AGNs are characterized by an extremely bright and compact emission region, powered by a super-massive black hole (SMBH) and an accretion disk, and relativistic outflows (jets) detected all across the electro-magnetic spectrum. In BL Lac sources the jet axis is oriented close to the line of sight, giving rise to a relativistic boosting of the emission. In radio galaxies, on the other hand, the jet makes a larger angle to the line of sight allowing to resolve the central core and the jet in great details. The giant radio galaxy M 87 with its proximity (1 6Mpc) and its very massive black hole ((3-6) x 10^9 M_solar) provides a unique laboratory to investigate VHE emission in such objects and thereby probe particle acceleration to relativistic energies near SMBH and in jets. M 87 has been established as a VHE emitter since 2005. The VHE emission displays strong variability on time-scales as short as a day. It has been subject of a large joint VHE and multi-wavelength (MWL) monitoring campaign in 2008, where a rise in the 43 GHz VLBA radio emission of the innermost region (core) was found to coincide with a flaring activity at VHE. This had been interpreted as a strong indication that the VHE emission is produced in the direct vicinity of the SMBH black hole. In 2010 again a flare at VHE was detected triggering further MWL observations with the VLBA, Chandra, and other instruments. At the same time M 87 was also observed with the Fermi-LAT telescope at GeV energies and the European VLBI Network (EVN). In this contribution preliminary results from the campaign will be presented.Comment: 5 pages, 2 figures, in the proceedings of the "International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume 355, 201

    Optical and Radio Polarimetry of the M87 Jet at 0.2" Resolution

    Full text link
    We discuss optical (HST/WFPC2 F555W) and radio (15 GHz VLA) polarimetry observations of the M87 jet taken during 1994-1995. Many knot regions are very highly polarized (4050\sim 40-50%, approaching the theoretical maximum for optically thin synchrotron radiation), suggesting highly ordered magnetic fields. High degrees of polarization are also observed in interknot regions. While the optical and radio polarization maps share many similarities, we observe significant differences between the radio and optical polarized structures, particularly for bright knots in the inner jet, giving us important insight into the jet's radial structure. Unlike in the radio, the optical magnetic field position angle becomes perpendicular to the jet at the upstream ends of knots HST-1, D, E and F. Moreover, the optical polarization decreases markedly at the position of the flux maxima in these knots. In contrast, the magnetic field position angle observed in the radio remains parallel to the jet in most of these regions, and the decreases in radio polarization are smaller. More minor differences are seen in other jet regions. Many of the differences between optical and radio polarimetry results can be explained in terms of a model whereby shocks occur in the jet interior, where higher-energy electrons are concentrated and dominate both polarized and unpolarized emissions in the optical, while the radio maps show strong contributions from lower-energy electrons in regions with {\bf B} parallel, near the jet surface.Comment: 28 pages, 7 figures; accepted for publication in AJ (May 1999

    Mid-infrared imaging- and spectro-polarimetric subarcsecond observations of NGC 1068

    Get PDF
    We present sub-arcsecond 7.5-13 μ\mum imaging- and spectro-polarimetric observations of NGC 1068 using CanariCam on the 10.4-m Gran Telescopio CANARIAS. At all wavelengths, we find: (1) A 90 ×\times 60 pc extended polarized feature in the northern ionization cone, with a uniform \sim44^{\circ} polarization angle. Its polarization arises from dust and gas emission in the ionization cone, heated by the active nucleus and jet, and further extinguished by aligned dust grains in the host galaxy. The polarization spectrum of the jet-molecular cloud interaction at \sim24 pc from the core is highly polarized, and does not show a silicate feature, suggesting that the dust grains are different from those in the interstellar medium. (2) A southern polarized feature at \sim9.6 pc from the core. Its polarization arises from a dust emission component extinguished by a large concentration of dust in the galaxy disc. We cannot distinguish between dust emission from magnetically aligned dust grains directly heated by the jet close to the core, and aligned dust grains in the dusty obscuring material surrounding the central engine. Silicate-like grains reproduce the polarized dust emission in this feature, suggesting different dust compositions in both ionization cones. (3) An upper limit of polarization degree of 0.3 per cent in the core. Based on our polarization model, the expected polarization of the obscuring dusty material is \lesssim0.1 per cent in the 8-13 μ\mum wavelength range. This low polarization may be arising from the passage of radiation through aligned dust grains in the shielded edges of the clumps.Comment: 17 pages, 10 figures, accepted for publication at MNRA
    corecore