308 research outputs found
Ernst Jünger and the problem of Nihilism in the age of total war
As a singular witness and actor of the tumultuous twentieth century, Ernst Jünger remains a controversial and enigmatic figure known above all for his vivid autobiographical accounts of experience in the trenches of the First World War. This article will argue that throughout his entire oeuvre, from personal diaries to novels and essays, he never ceased to grapple with what he viewed as the central question of the age, namely that of the problem of nihilism and the means to overcome it. Inherited from Nietzsche’s diagnosis of Western civilization in the late nineteenth century to which he added an acute observation of the particular role of technology within it, Jünger would employ this lens to make sense of the seemingly absurd industrial slaughter of modern war and herald the advent of a new voluntarist and bellicist order that was to imminently sweep away timorous and decadent bourgeois societies obsessed with security and self-preservation. Jünger would ultimately see his expectations dashed, including by the forms of rule that National Socialism would take, and eventually retreated into a reclusive quietism. Yet he never abandoned his central problematique of nihilism, developing it further in exchanges with Martin Heidegger after the Second World War. And for all the ways in which he may have erred, his life-long struggle with meaning in the age of technique and its implications for war and security continue to make Jünger a valuable interlocutor of the present
Universality-class dependence of energy distributions in spin glasses
We study the probability distribution function of the ground-state energies
of the disordered one-dimensional Ising spin chain with power-law interactions
using a combination of parallel tempering Monte Carlo and branch, cut, and
price algorithms. By tuning the exponent of the power-law interactions we are
able to scan several universality classes. Our results suggest that mean-field
models have a non-Gaussian limiting distribution of the ground-state energies,
whereas non-mean-field models have a Gaussian limiting distribution. We compare
the results of the disordered one-dimensional Ising chain to results for a
disordered two-leg ladder, for which large system sizes can be studied, and
find a qualitative agreement between the disordered one-dimensional Ising chain
in the short-range universality class and the disordered two-leg ladder. We
show that the mean and the standard deviation of the ground-state energy
distributions scale with a power of the system size. In the mean-field
universality class the skewness does not follow a power-law behavior and
converges to a nonzero constant value. The data for the Sherrington-Kirkpatrick
model seem to be acceptably well fitted by a modified Gumbel distribution.
Finally, we discuss the distribution of the internal energy of the
Sherrington-Kirkpatrick model at finite temperatures and show that it behaves
similar to the ground-state energy of the system if the temperature is smaller
than the critical temperature.Comment: 15 pages, 20 figures, 1 tabl
Optimization by thermal cycling
Thermal cycling is an heuristic optimization algorithm which consists of
cyclically heating and quenching by Metropolis and local search procedures,
respectively, where the amplitude slowly decreases. In recent years, it has
been successfully applied to two combinatorial optimization tasks, the
traveling salesman problem and the search for low-energy states of the Coulomb
glass. In these cases, the algorithm is far more efficient than usual simulated
annealing. In its original form the algorithm was designed only for the case of
discrete variables. Its basic ideas are applicable also to a problem with
continuous variables, the search for low-energy states of Lennard-Jones
clusters.Comment: Submitted to Proceedings of the Workshop "Complexity, Metastability
and Nonextensivity", held in Erice 20-26 July 2004. Latex, 7 pages, 3 figure
The critical exponents of the two-dimensional Ising spin glass revisited: Exact Ground State Calculations and Monte Carlo Simulations
The critical exponents for of the two-dimensional Ising spin glass
model with Gaussian couplings are determined with the help of exact ground
states for system sizes up to and by a Monte Carlo study of a
pseudo-ferromagnetic order parameter. We obtain: for the stiffness exponent
, for the magnetic exponent
and for the chaos exponent . From Monte Carlo simulations we
get the thermal exponent . The scaling prediction is
fulfilled within the error bars, whereas there is a disagreement with the
relation .Comment: 8 pages RevTeX, 7 eps-figures include
QCD Corrections to the Top Decay Mode t \ra \tilde{t} \chi^0
In supersymmetric theories, the top quark can decay into its scalar partner
plus a neutralino, with an appreciable rate. We calculate the QCD
corrections to this decay mode in the minimal supersymmetric extension of the
Standard Model. These corrections can be either positive or negative and
increase logarithmically with the gluino mass. For gluino masses below 1 TeV,
they are at most of the order of ten percent and therefore, well under control.Comment: 15 pages including 4 figs (using psfig.sty). A few typos have been
corrected and some references added. The results for Figs. 3 and 4 are now
presented in the dimensional reduction scheme. Version to appear in Phys.
Rev.
Spin glasses and algorithm benchmarks: A one-dimensional view
Spin glasses are paradigmatic models that deliver concepts relevant for a
variety of systems. However, rigorous analytical results are difficult to
obtain for spin-glass models, in particular for realistic short-range models.
Therefore large-scale numerical simulations are the tool of choice. Concepts
and algorithms derived from the study of spin glasses have been applied to
diverse fields in computer science and physics. In this work a one-dimensional
long-range spin-glass model with power-law interactions is discussed. The model
has the advantage over conventional systems in that by tuning the power-law
exponent of the interactions the effective space dimension can be changed thus
effectively allowing the study of large high-dimensional spin-glass systems to
address questions as diverse as the existence of an Almeida-Thouless line,
ultrametricity and chaos in short range spin glasses. Furthermore, because the
range of interactions can be changed, the model is a formidable test-bed for
optimization algorithms.Comment: 10 pages, 8 figures (two in crappy quality due to archive
restrictions). Proceedings of the International Workshop on
Statistical-Mechanical Informatics 2007, Kyoto (Japan) September 16-19, 200
Phenotypic and genotypic characterization of Neisseria gonorrhoeae isolates among individuals at high risk for sexually transmitted diseases in Zurich, Switzerland
Background: While ceftriaxone resistance remains scarce in Switzerland, global Neisseria gonorrhoeae (NG) antimicrobial resistance poses an urgent threat. This study describes clinical characteristics in MSM (men who have sex with men) diagnosed with NG infection and analyses NG resistance by phenotypic and genotypic means.
Methods: Data of MSM enrolled in three clinical cohorts with a positive polymerase chain reaction test (PCR) for NG were analysed between January 2019 and December 2021 and linked with antibiotic susceptibility testing. Bacterial isolates were subjected to whole genome sequencing (WGS).
Results: Of 142 participants, 141 (99%) were MSM and 118 (84%) living with HIV. Participants were treated with ceftriaxone ( N = 79), azithromycin ( N = 2), or a combination of both ( N = 61). No clinical or microbiological failures were observed. From 182 positive PCR samples taken, 23 were available for detailed analysis. Based on minimal inhibitory concentrations (MICs), all isolates were susceptible to ceftriaxone, gentamicin, cefixime, cefpodoxime, ertapenem, zoliflodacin, and spectinomycin. Resistance to azithromycin, tetracyclines and ciprofloxacin was observed in 10 (43%), 23 (100%) and 11 (48%) of the cases, respectively. Analysis of WGS data revealed combinations of resistance determinants that matched with the corresponding phenotypic resistance pattern of each isolate.
Conclusion: Among the MSM diagnosed with NG mainly acquired in Switzerland, ceftriaxone MICs were low for a subset of bacterial isolates studied and no treatment failures were observed. For azithromycin, high occurrences of in vitro resistance were found. Gentamicin, cefixime, cefpodoxime, ertapenem, spectinomycin, and zoliflodacin displayed excellent in vitro activity against the 23 isolates underscoring their potential as alternative agents to ceftriaxone
100 Hz ROCS microscopy correlated with fluorescence reveals cellular dynamics on different spatiotemporal scales
Fluorescence techniques dominate the field of live-cell microscopy, but bleaching and motion blur from too long integration times limit dynamic investigations of small objects. High contrast, label-free life-cell imaging of thousands of acquisitions at 160 nm resolution and 100 Hz is possible by Rotating Coherent Scattering (ROCS) microscopy, where intensity speckle patterns from all azimuthal illumination directions are added up within 10 ms. In combination with fluorescence, we demonstrate the performance of improved Total Internal Reflection (TIR)-ROCS with variable illumination including timescale decomposition and activity mapping at five different examples: millisecond reorganization of macrophage actin cortex structures, fast degranulation and pore opening in mast cells, nanotube dynamics between cardiomyocytes and fibroblasts, thermal noise driven binding behavior of virus-sized particles at cells, and, bacterial lectin dynamics at the cortex of lung cells. Using analysis methods we present here, we decipher how motion blur hides cellular structures and how slow structure motions cover decisive fast motions
The T1-weighted/T2-weighted ratio as a biomarker of anti-NMDA receptor encephalitis
BACKGROUND: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis rarely causes visible lesions in conventional MRI, yet advanced imaging detects extensive white matter damage. To improve prognostic capabilities, we evaluate the T1-weighted/T2-weighted (T1w/T2w) ratio, a measure of white matter integrity computable from clinical MRI sequences, in NMDAR encephalitis and examine its associations with cognitive impairment. METHODS: T1-weighted and T2-weighted MRI were acquired cross-sectionally at 3 Tesla in 53 patients with NMDAR encephalitis (81% women, mean age 29 years) and 53 matched healthy controls. Quantitative and voxel-wise group differences in T1w/T2w ratios and associations with clinical and neuropsychological outcomes were assessed. P-values were false discovery rate (FDR) adjusted where multiple tests were conducted. RESULTS: Patients with NMDAR encephalitis had significantly lower T1w/T2w ratios across normal appearing white matter (p=0.009, Hedges' g=-0.51), which was associated with worse verbal episodic memory performance (r=0.39, p=0.005, p(FDR)=0.026). White matter integrity loss was observed in the corticospinal tract, superior longitudinal fascicle, optic radiation and callosal body with medium to large effects (Cohen's d=[0.42-1.17]). In addition, patients showed decreased T1w/T2w ratios in the hippocampus (p=0.002, p(FDR)=0.005, Hedges' g=-0.62), amygdala (p=0.002, p(FDR)=0.005, Hedges' g=-0.63) and thalamus (p=0.010, p(FDR)=0.019, Hedges' g=-0.51). CONCLUSIONS: The T1w/T2w ratio detects microstructural changes in grey and white matter of patients with NMDAR encephalitis that correlate with cognitive performance. Computable from conventional clinical MRI sequences, this measure shows promise in bridging the clinico-radiological dissociation in NMDAR encephalitis and could serve as an imaging outcome measure in clinical trials
Guidelines for Clinical Studies with Compression Devices in Patients with Venous Disorders of the Lower Limb
Digitalitzat per Artypla
- …