576 research outputs found

    Violation of Leggett-Garg inequalities in quantum measurements with variable resolution and back-action

    Full text link
    Quantum mechanics violates Leggett-Garg inequalities because the operator formalism predicts correlations between different spin components that would correspond to negative joint probabilities for the outcomes of joint measurements. However, the uncertainty principle ensures that such joint measurements cannot be implemented without errors. In a sequential measurement of the spin components, the resolution and back-action errors of the intermediate measurement can be described by random spin flips acting on an intrinsic joint probability. If the error rates are known, the intrinsic joint probability can be reconstructed from the noisy statistics of the actual measurement outcomes. In this paper, we use the spin-flip model of measurement errors to analyze experimental data on photon polarization obtained with an interferometric setup that allows us to vary the measurement strength and hence the balance between resolution and back-action errors. We confirm that the intrinsic joint probability obtained from the experimental data is independent of measurement strength and show that the same violation of the Leggett-Garg inequality can be obtained for any combination of measurement resolution and back-action.Comment: 17 pages, 7 figure

    Measurement and control of spatial qubits generated by passing photons through double-slits

    Full text link
    We present an experimental study of the non-classical correlations of a pair of spatial qubits formed by passing two down-converted photons through a pair of double slits. After confirming the entanglement generated in our setup by quantum tomography using separate measurements of the slit images and the interference patterns, we show that the complete Hilbert space of the spatial qubits can be accessed by measurements performed in a single plane between the image plane and the focal plane of a lens. Specifically, it is possible to obtain both the which-path and the interference information needed for quantum tomography in a single scan of the transversal distribution of photon coincidences. Since this method can easily be extended to multi-dimensional systems, it may be a valuable tool in the application of spatial qudits to quantum information processes.Comment: 19 pages, including 10 figures and 2 table

    Quantum contextuality of complementary photon polarizations explored by adaptive input state control

    Full text link
    We experimentally investigate non-local contextual relations between complementary photon polarizations by adapting the entanglement and the local polarizations of a two-photon state to satisfy three deterministic conditions demonstrating both quantum contextuality and non-locality. The key component of this adaptive input state control is the variable degree of entanglement of the photon source. Local polarization rotations can optimize two of the three correlations, and the variation of the entanglement optimizes the third correlation. Our results demonstrate that quantum contextuality is based on a non-trivial trade-off between local complementarity and quantum correlations.Comment: 17 pages, 5 figure

    A possible solution to the which-way problem of quantum interference

    Full text link
    It is commonly assumed that the observation of an interference pattern is incompatible with any information about the path taken by a quantum particle. Here we show that, contrary to this assumption, the experimentally observable effects of small polarization rotations applied in the slits of a double slit experiment indicate that individual particles passing the slits before their detection in the interference pattern are physically delocalized with regard to their interactions with the local polarization rotations. The rate at which the polarization is flipped to the orthogonal state is a direct measure of the fluctuations of the polarization rotation angles experienced by each particle. Particles detected in the interference maxima experience no fluctuations at all, indicating a presence of exactly one half of the particle in each slit, while particles detected close to the minima experience polarization rotations much larger than the local rotations, indicating a negative presence in one of the slits and a presence of more than one in the other.Comment: 7 pages, including 1 figure; improved explanation of the relation with weak values and weak measurements in the introductio
    • …
    corecore