2,476 research outputs found

    Neutrino Constraints on the Dark Matter Total Annihilation Cross Section

    Get PDF
    In the indirect detection of dark matter through its annihilation products, the signals depend on the square of the dark matter density, making precise knowledge of the distribution of dark matter in the Universe critical for robust predictions. Many studies have focused on regions where the dark matter density is greatest, e.g., the Galactic Center, as well as on the cosmic signal arising from all halos in the Universe. We focus on the signal arising from the whole Milky Way halo; this is less sensitive to uncertainties in the dark matter distribution, and especially for flatter profiles, this halo signal is larger than the cosmic signal. We illustrate this by considering a dark matter model in which the principal annihilation products are neutrinos. Since neutrinos are the least detectable Standard Model particles, a limit on their flux conservatively bounds the dark matter total self-annihilation cross section from above. By using the Milky Way halo signal, we show that previous constraints using the cosmic signal can be improved on by 1-2 orders of magnitude; dedicated experimental analyses should be able to improve both by an additional 1-2 orders of magnitude.Comment: 8 pages, 4 figures; Matches version published in Phys. Rev.

    Cosmic Neutrino Bound on the Dark Matter Annihilation Rate in the Late Universe

    Get PDF
    How large can the dark matter self-annihilation rate in the late universe be? This rate depends on (rho_DM/m_chi)^2 , where rho_DM/m_chi is the number density of dark matter, and the annihilation cross section is averaged over the velocity distribution. Since the clustering of dark matter is known, this amounts to asking how large the annihilation cross section can be. Kaplinghat, Knox, and Turner proposed that a very large annihilation cross section could turn a halo cusp into a core, improving agreement between simulations and observations; Hui showed that unitarity prohibits this for large dark matter masses. We show that if the annihilation products are Standard Model particles, even just neutrinos, the consequent fluxes are ruled out by orders of magnitude, even at small masses. Equivalently, to invoke such large annihilation cross sections, one must now require that essentially no Standard Model particles are produced.Comment: 4 pages, 2 figures; to appear in the proceedings of the TeV Particle Astrophysics II Workshop, Madison, Wisconsin, 28-31 Aug 200

    Nucleon Flow and Fragment Flow in Heavy Ion Reactions

    Full text link
    The collective flow of nucleons and that of fragments in the 12C + 12C reaction below 150 MeV/nucleon are calculated with the antisymmetrized version of molecular dynamics combined with the statistical decay calculation. Density dependent Gogny force is used as the effective interaction. The calculated balance energy is about 100 MeV/nucleon, which is close to the observed value. Below the balance energy, the absolute value of the fragment flow is larger than that of nucleon flow, which is also in accordance with data. The dependence of the flow on the stochastic collision cross section and its origin are discussed. All the results are naturally understood by introducing the concept of two components of flow: the flow of dynamically emitted nucleons and the flow of the nuclear matter which contributes to both the flow of fragments and the flow of nucleons due to the statistical decay.Comment: 20 pages, PostScript figures, LaTeX with REVTeX and EPSF, KUNS 121
    • …
    corecore