291 research outputs found
Impact of solar radiation on chemical structure and micromechanical properties of cellulose-based humidity-sensing material Cottonid
Renewable and environmentally responsive materials are an energy- and resource-efficient approach in terms of civil engineering applications, e.g. as so-called smart building skins. To evaluate the influence of different environmental stimuli, like humidity or solar radiation, on the long-term actuation behavior and mechanical robustness of these materials, it is necessary to precisely characterize the magnitude and range of stimuli that trigger reactions and the resulting kinetics of a material, respectively, with suitable testing equipment and techniques. The overall aim is to correlate actuation potential and mechanical properties with process- or application-oriented parameters in terms of demand-oriented stimuli-responsive element production. In this study, the impact of solar radiation as environmental trigger on the cellulose-based humidity-sensing material Cottonid, which is a promising candidate for adaptive and autonomously moving elements, was investigated. For simulating solar radiation in the lab, specimens were exposed to short-wavelength blue light as well as a standardized artificial solar irradiation (CIE Solar ID65) in long-term aging
experiments. Photodegradation behavior was analyzed by Fourier-transform infrared as well as electron paramagnetic resonance spectroscopy measurements to assess changes in Cottonid’s chemical composition. Subsequently, changes in micromechanical properties on the respective specimens’surface were investigated with roughness measurements and ultra-micro-hardness tests to characterize variations in stiffness distribution in comparison to the initial condition.
Also, thermal effects during long-term aging were considered and contrasted to pure radiative effects. In addition, to investigate the influence of process-related parameters on Cottonid’s humidity-driven deformation behavior, actuation tests were performed in an alternating climate chamber using a customized specimen holder, instrumented with digital image correlation (DIC). DIC was used for precise actuation strain measurements to comparatively evaluate different influences on the material’s sorption behavior. The infrared absorbance spectra of different aging states of irradiated Cottonid indicate oxidative stress on the surface compared to unaged samples. These findings differ under pure thermal loads. EPR spectra could corroborate these findings as radicals were detected, which were attributed to oxidation processes. Instrumented actuation experiments revealed the influence of processing-related parameters on
the sorption behavior of the tested and structurally optimized Cottonid variant. Experimental data supports the
definition of an optimal process window for stimuli-responsive element production. Based on these results, tailor-made functional materials shall be generated in the future where stimuli-responsiveness can be adjusted through the manufacturing process
Cavity Assisted Nondestructive Laser Cooling of Atomic Qubits
We analyze two configurations for laser cooling of neutral atoms whose
internal states store qubits. The atoms are trapped in an optical lattice which
is placed inside a cavity. We show that the coupling of the atoms to the damped
cavity mode can provide a mechanism which leads to cooling of the motion
without destroying the quantum information.Comment: 12 page
Echo in Optical Lattices: Stimulated Revival of Breathing Oscillations
We analyze a stimulated revival (echo) effect for the breathing modes of the
atomic oscillations in optical lattices. The effect arises from the dephasing
due to the weak anharmonicity being partly reversed in time by means of
additional parametric excitation of the optical lattice. The shape of the echo
response is obtained by numerically simulating the equation of motion for the
atoms with subsequent averaging over the thermal initial conditions. A
qualitative analysis of the phenomenon shows that the suggested echo mechanism
combines the features of both spin and phonon echoes.Comment: 13 pages, 3 figure
5-Thia-5-Deazaflavin, a 1e − -Transferring Flavin Analog
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65939/1/j.1432-1033.1979.tb12952.x.pd
Evaluation of range of motion restriction within the hip joint
In Total Hip Arthroplasty, determining the impingement free range of motion requirement is a complex task. This is because in the native hip, motion is restricted by both impingement as well as soft tissue restraint. The aim of this study is to determine a range of motion benchmark which can identify motions which are at risk from impingement and those which are constrained due to soft tissue. Two experimental methodologies were used to determine motions which were limited by impingement and those motions which were limited by both impingement and soft tissue restraint. By comparing these two experimental results, motions which were limited by impingement were able to be separated from those motions which were limited by soft tissue restraint. The results show motions in extension as well as flexion combined with adduction are limited by soft tissue restraint. Motions in flexion, flexion combined with abduction and adduction are at risk from osseous impingement. Consequently, these motions represent where the maximum likely damage will occur in femoroacetabular impingement or at most risk of prosthetic impingement in Total Hip Arthroplasty
Synchronization of Hamiltonian motion and dissipative effects in optical lattices: Evidence for a stochastic resonance
We theoretically study the influence of the noise strength on the excitation
of the Brillouin propagation modes in a dissipative optical lattice. We show
that the excitation has a resonant behavior for a specific amount of noise
corresponding to the precise synchronization of the Hamiltonian motion on the
optical potential surfaces and the dissipative effects associated with optical
pumping in the lattice. This corresponds to the phenomenon of stochastic
resonance. Our results are obtained by numerical simulations and correspond to
the analysis of microscopic quantities (atomic spatial distributions) as well
as macroscopic quantities (enhancement of spatial diffusion and pump-probe
spectra). We also present a simple analytical model in excellent agreement with
the simulations
Quantum-state control in optical lattices
We study the means to prepare and coherently manipulate atomic wave packets
in optical lattices, with particular emphasis on alkali atoms in the
far-detuned limit. We derive a general, basis independent expression for the
lattice operator, and show that its off-diagonal elements can be tailored to
couple the vibrational manifolds of separate magnetic sublevels. Using these
couplings one can evolve the state of a trapped atom in a quantum coherent
fashion, and prepare pure quantum states by resolved-sideband Raman cooling. We
explore the use of atoms bound in optical lattices to study quantum tunneling
and the generation of macroscopic superposition states in a double-well
potential. Far-off-resonance optical potentials lend themselves particularly
well to reservoir engineering via well controlled fluctuations in the
potential, making the atom/lattice system attractive for the study of
decoherence and the connection between classical and quantum physics.Comment: 35 pages including 8 figures. To appear in Phys. Rev. A. March 199
Identification and Properties of New Flavins in Electron-Transferring Flavoprotein from Peptostreptococcus elsdenii and Pig-Liver Glycolate Oxidase
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65168/1/j.1432-1033.1974.tb03515.x.pd
The Chemical and Electronic Structure of the Neutral Flavin Radical as Revealed by Electron Spin Resonance Spectroscopy of Chemically and Isotopically Substituted Derivatives
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65670/1/j.1432-1033.1970.tb00277.x.pd
A Retrospective Genomic Landscape of 661 Young Adult Glioblastomas Diagnosed Using 2016 WHO Guidelines for Central Nervous System Tumors
The authors present a cohort of 661 young adult glioblastomas diagnosed using 2016 WHO World Health Organization Classification of Tumors of the Central Nervous System, utilizing comprehensive genomic profiling (CGP) to explore their genomic landscape and assess their relationship to currently defined disease entities. This analysis explored variants with evidence of pathogenic function, common copy number variants (CNVs), and several novel fusion events not described in literature. Tumor mutational burden (TMB) mutational signatures, anatomic location, and tumor recurrence are further explored. Using data collected from CGP, unsupervised machine-learning techniques were leveraged to identify 10 genomic classes in previously assigned young adult glioblastomas. The authors relate these molecular classes to current World Health Organization guidelines and reference current literature to give therapeutic and prognostic descriptions where possible
- …