15,925 research outputs found

    Screening Masses and Improvement in Pure SU(2) Lattice Gauge Theory at High Temperatures

    Get PDF
    From the long-distance behaviour of gluon and Polyakov loop correlation functions we extract masses resp. energies in the electric and magnetic sectors. We discuss their dependence on the temperature and on the momentum as well as the relevance of an improvement of the lattice discretization of the action.Comment: Talk presented at LATTICE97 (Finite Temperature and Density) by J. Rank, 3 pages, LaTeX File, espcrc2.sty Style File and 2 eps figures include

    Introduction

    Get PDF

    Quantum Flux and Reverse Engineering of Quantum Wavefunctions

    Full text link
    An interpretation of the probability flux is given, based on a derivation of its eigenstates and relating them to coherent state projections on a quantum wavefunction. An extended definition of the flux operator is obtained using coherent states. We present a "processed Husimi" representation, which makes decisions using many Husimi projections at each location. The processed Husimi representation reverse engineers or deconstructs the wavefunction, yielding the underlying classical ray structure. Our approach makes possible interpreting the dynamics of systems where the probability flux is uniformly zero or strongly misleading. The new technique is demonstrated by the calculation of particle flow maps of the classical dynamics underlying a quantum wavefunction.Comment: Accepted to EP

    Single spin asymmetries in inclusive hadron production from SIDIS to hadronic collisions: universality and phenomenology

    Get PDF
    In a perturbative QCD approach, with inclusion of spin and transverse momentum effects, experimental data on azimuthal asymmetries observed in polarized semi-inclusive deeply inelastic scattering and e+ e- annihilations can be used to determine the Sivers, transversity and Collins soft functions. By using these functions, within the same scheme, we predict p(transv. polarized) p -> h + X single spin asymmetries in remarkable agreement with RHIC experimental data.Comment: 5 pages, 6 ps figure

    Eigenvalue distribution of the Dirac operator at finite temperature with (2+1)-flavor dynamical quarks using the HISQ action

    Full text link
    We report on the behavior of the eigenvalue distribution of the Dirac operator in (2+1)-flavor QCD at finite temperature, using the HISQ action. We calculate the eigenvalue density at several values of the temperature close to the pseudocritical temperature. For this study we use gauge field configurations generated on lattices of size 323Ă—832^3 \times 8 with two light quark masses corresponding to pion masses of about 160 and 115 MeV. We find that the eigenvalue density below TcT_c receives large contributions from near-zero modes which become smaller as the temperature increases or the light quark mass decreases. Moreover we find no clear evidence for a gap in the eigenvalue density up to 1.1TcT_c. We also analyze the eigenvalue density near TcT_c where it appears to show a power-law behavior consistent with what is expected in the critical region near the second order chiral symmetry restoring phase transition in the massless limit.Comment: 7 pages, 7 figures, talk presented at the XXIX International Symposium on Lattice Field Theory, July 10-16 2011, Squaw Valley, Lake Tahoe, California, US
    • …
    corecore