4,983 research outputs found

    A possible route to spontaneous reduction of the heat conductivity by a temperature gradient driven instability in electron-ion plasmas

    Get PDF
    We have shown that there exists low-frequency growing modes driven by a global temperature gradient in electron and ion plasmas, by linear perturbation analysis within the frame work of plasma Kinetic theory. The driving force of the instability is the local deviation of the distribution function from the Maxwell-Boltzmann due to global temperature gradient. Application to the intracluster medium shows that scattering of the particles due to waves excited by the instability is possible to reduce mean free paths of electron and ion down to five to seven order of magnitude than the mean free paths due to Coulomb collisions. This may provide a hint to explain why hot and cool gas can co-exist in the intracluster medium in spite of the very short evaporation time scale due to thermal conduction if the conductivity is the classical Spitzer value. Our results suggest that the realization of the global thermal equilibrium is postponed by the local instability which is induced for quicker realization of local thermal equilibrium state in plasmas. The instability provides a new possibility to create and grow cosmic magnetic fields without any seed magnetic field.Comment: Accepted for publication in ApJ: 16 pages, 1figur

    Evolution of Multiphase Hot Interstellar Medium in Elliptical Galaxies

    Get PDF
    We present the results of a variety of simulations concerning the evolution of multiphase (inhomogeneous) hot interstellar medium (ISM) in elliptical galaxies. We assume the gases ejected from stars do not mix globally with the circumferential gas. The ejected gas components evolve separately according to their birth time, position, and origin. We consider cases where supernova remnants (SNRs) mix with local ISM. The components with high metal abundance and/or high density cool and drop out of the hot ISM gas faster than the other components because of their high metal abundance and/or density. This makes the average metal abundance of the hot ISM low. Furthermore, since the metal abundance of mass-loss gas decreases with radius, gas inflow from outer region makes the average metal abundance of the hot ISM smaller than that of mass-loss gas in the inner region. As gas ejection rate of stellar system decreases, mass fraction of mass-loss gas ejected at outer region increases in a galaxy. If the mixing of SNRs is ineffective, our model predicts that observed [Si/Fe] and [Mg/Fe] should decrease towards the galactic center because of strong iron emission by SNRs. In the outer region, where the cooling of time of the ISM is long, the selective cooling is ineffective and most of gas components remain hot. Thus, the metal abundance of the ISM in this region directly reflects that of the gas ejected from stars. Our model shows that supernovae are not effective heating sources in the inner region of elliptical galaxies, because most of the energy released by them radiates. Therefore, cooling flow is established even if the supernova rate is high. Mixing of SNRs with ambient ISM makes the energy transfer between supernova explosion and ambient ISM more effective.Comment: 21 pages (AASTeX), 14 figures, accepted for publication in The Astrophysical Journa

    Spectral partitions on infinite graphs

    Full text link
    Statistical models on infinite graphs may exhibit inhomogeneous thermodynamic behaviour at macroscopic scales. This phenomenon is of geometrical origin and may be properly described in terms of spectral partitions into subgraphs with well defined spectral dimensions and spectral weights. These subgraphs are shown to be thermodynamically homogeneous and effectively decoupled.Comment: 8 pages, to appear on Journal of Physics

    Complete Genome Sequences of Arcobacter butzleri ED-1 and Arcobacter sp Strain L, Both Isolated from a Microbial Fuel Cell

    Get PDF
    Arcobacter butzleri strain ED-1 is an exoelectrogenic epsilonproteobacterium isolated from the anode biofilm of a microbial fuel cell. Arcobacter sp. strain L dominates the liquid phase of the same fuel cell. Here we report the finished and annotated genome sequences of these organisms

    Origin of the tetragonal-to-orthorhombic (nematic) phase transition in FeSe: a combined thermodynamic and NMR study

    Get PDF
    The nature of the tetragonal-to-orthorhombic structural transition at Ts90T_s\approx90 K in single crystalline FeSe is studied using shear-modulus, heat-capacity, magnetization and NMR measurements. The transition is shown to be accompanied by a large shear-modulus softening, which is practically identical to that of underdoped Ba(Fe,Co)2_2As2_2, suggesting very similar strength of the electron-lattice coupling. On the other hand, a spin-fluctuation contribution to the spin-lattice relaxation rate is only observed below TsT_s. This indicates that the structural, or "nematic", phase transition in FeSe is not driven by magnetic fluctuations

    Charged particle display

    Full text link
    An optical shutter based on charged particles is presented. The output light intensity of the proposed device has an intrinsic dependence on the interparticle spacing between charged particles, which can be controlled by varying voltages applied to the control electrodes. The interparticle spacing between charged particles can be varied continuously and this opens up the possibility of particle based displays with continuous grayscale.Comment: typographic errors corrected in Eqs (37) and (39); published in Journal of Applied Physics; doi:10.1063/1.317648
    corecore