191 research outputs found

    Smooth Random Surfaces from Tight Immersions?

    Full text link
    We investigate actions for dynamically triangulated random surfaces that consist of a gaussian or area term plus the {\it modulus} of the gaussian curvature and compare their behavior with both gaussian plus extrinsic curvature and ``Steiner'' actions.Comment: 7 page

    An Effective Model for Crumpling in Two Dimensions?

    Full text link
    We investigate the crumpling transition for a dynamically triangulated random surface embedded in two dimensions using an effective model in which the disordering effect of the XX variables on the correlations of the normals is replaced by a long-range ``antiferromagnetic'' term. We compare the results from a Monte Carlo simulation with those obtained for the standard action which retains the XX's and discuss the nature of the phase transition.Comment: 5 page

    Folding transition of the triangular lattice in a discrete three--dimensional space

    Get PDF
    A vertex model introduced by M. Bowick, P. Di Francesco, O. Golinelli, and E. Guitter (cond-mat/9502063) describing the folding of the triangular lattice onto the face centered cubic lattice has been studied in the hexagon approximation of the cluster variation method. The model describes the behaviour of a polymerized membrane in a discrete three--dimensional space. We have introduced a curvature energy and a symmetry breaking field and studied the phase diagram of the resulting model. By varying the curvature energy parameter, a first-order transition has been found between a flat and a folded phase for any value of the symmetry breaking field.Comment: 11 pages, latex file, 2 postscript figure

    First-order transition of tethered membranes in 3d space

    Full text link
    We study a model of phantom tethered membranes, embedded in three-dimensional space, by extensive Monte Carlo simulations. The membranes have hexagonal lattice structure where each monomer is interacting with six nearest-neighbors (NN). Tethering interaction between NN, as well as curvature penalty between NN triangles are taken into account. This model is new in the sense that NN interactions are taken into account by a truncated Lennard-Jones potential including both repulsive and attractive parts. The main result of our study is that the system undergoes a first-order crumpling transition from low temperature flat phase to high temperature crumpled phase, in contrast with early numerical results on models of tethered membranes.Comment: 5 pages, 6 figure

    Folding of the Triangular Lattice with Quenched Random Bending Rigidity

    Full text link
    We study the problem of folding of the regular triangular lattice in the presence of a quenched random bending rigidity + or - K and a magnetic field h (conjugate to the local normal vectors to the triangles). The randomness in the bending energy can be understood as arising from a prior marking of the lattice with quenched creases on which folds are favored. We consider three types of quenched randomness: (1) a ``physical'' randomness where the creases arise from some prior random folding; (2) a Mattis-like randomness where creases are domain walls of some quenched spin system; (3) an Edwards-Anderson-like randomness where the bending energy is + or - K at random independently on each bond. The corresponding (K,h) phase diagrams are determined in the hexagon approximation of the cluster variation method. Depending on the type of randomness, the system shows essentially different behaviors.Comment: uses harvmac (l), epsf, 17 figs included, uuencoded, tar compresse

    Folding transitions of the triangular lattice with defects

    Get PDF
    A recently introduced model describing the folding of the triangular lattice is generalized allowing for defects in the lattice and written as an Ising model with nearest-neighbor and plaquette interactions on the honeycomb lattice. Its phase diagram is determined in the hexagon approximation of the cluster variation method and the crossover from the pure Ising to the pure folding model is investigated, obtaining a quite rich structure with several multicritical points. Our results are in very good agreement with the available exact ones and extend a previous transfer matrix study.Comment: 16 pages, latex, 5 postscript figure

    Pennsylvania Folklife Vol. 32, No. 4

    Get PDF
    • Frakturs • Apple Head Dolls are Unique • Tableware and Dutch Folklore • The Pipemaker • Wheat Weaving • Beekeeping: Past and Present • The Pennsylvania Longrifle • Festival Focus • Folk Festival Programs • Quilts • The Country Butcher • Stained Glass • Metal Casting in Sand • Is This Pure Leather? • The Horse and Carriage • Marquetry, Parquetry and Intarsia • Pennsylvania Dutch Cookinghttps://digitalcommons.ursinus.edu/pafolklifemag/1100/thumbnail.jp
    corecore