191 research outputs found
Recommended from our members
Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis.
Radiomics is an emerging technology for imaging biomarker discovery and disease-specific personalized treatment management. This paper aims to determine the benefit of using multi-modality radiomics data from PET and MR images in the characterization breast cancer phenotype and prognosis. Eighty-four features were extracted from PET and MR images of 113 breast cancer patients. Unsupervised clustering based on PET and MRI radiomic features created three subgroups. These derived subgroups were statistically significantly associated with tumor grade (p = 2.0 × 10-6), tumor overall stage (p = 0.037), breast cancer subtypes (p = 0.0085), and disease recurrence status (p = 0.0053). The PET-derived first-order statistics and gray level co-occurrence matrix (GLCM) textural features were discriminative of breast cancer tumor grade, which was confirmed by the results of L2-regularization logistic regression (with repeated nested cross-validation) with an estimated area under the receiver operating characteristic curve (AUC) of 0.76 (95% confidence interval (CI) = [0.62, 0.83]). The results of ElasticNet logistic regression indicated that PET and MR radiomics distinguished recurrence-free survival, with a mean AUC of 0.75 (95% CI = [0.62, 0.88]) and 0.68 (95% CI = [0.58, 0.81]) for 1 and 2 years, respectively. The MRI-derived GLCM inverse difference moment normalized (IDMN) and the PET-derived GLCM cluster prominence were among the key features in the predictive models for recurrence-free survival. In conclusion, radiomic features from PET and MR images could be helpful in deciphering breast cancer phenotypes and may have potential as imaging biomarkers for prediction of breast cancer recurrence-free survival
Smooth Random Surfaces from Tight Immersions?
We investigate actions for dynamically triangulated random surfaces that
consist of a gaussian or area term plus the {\it modulus} of the gaussian
curvature and compare their behavior with both gaussian plus extrinsic
curvature and ``Steiner'' actions.Comment: 7 page
An Effective Model for Crumpling in Two Dimensions?
We investigate the crumpling transition for a dynamically triangulated random
surface embedded in two dimensions using an effective model in which the
disordering effect of the variables on the correlations of the normals is
replaced by a long-range ``antiferromagnetic'' term. We compare the results
from a Monte Carlo simulation with those obtained for the standard action which
retains the 's and discuss the nature of the phase transition.Comment: 5 page
Folding transition of the triangular lattice in a discrete three--dimensional space
A vertex model introduced by M. Bowick, P. Di Francesco, O. Golinelli, and E.
Guitter (cond-mat/9502063) describing the folding of the triangular lattice
onto the face centered cubic lattice has been studied in the hexagon
approximation of the cluster variation method. The model describes the
behaviour of a polymerized membrane in a discrete three--dimensional space. We
have introduced a curvature energy and a symmetry breaking field and studied
the phase diagram of the resulting model. By varying the curvature energy
parameter, a first-order transition has been found between a flat and a folded
phase for any value of the symmetry breaking field.Comment: 11 pages, latex file, 2 postscript figure
First-order transition of tethered membranes in 3d space
We study a model of phantom tethered membranes, embedded in three-dimensional
space, by extensive Monte Carlo simulations. The membranes have hexagonal
lattice structure where each monomer is interacting with six nearest-neighbors
(NN). Tethering interaction between NN, as well as curvature penalty between NN
triangles are taken into account. This model is new in the sense that NN
interactions are taken into account by a truncated Lennard-Jones potential
including both repulsive and attractive parts. The main result of our study is
that the system undergoes a first-order crumpling transition from low
temperature flat phase to high temperature crumpled phase, in contrast with
early numerical results on models of tethered membranes.Comment: 5 pages, 6 figure
Folding of the Triangular Lattice with Quenched Random Bending Rigidity
We study the problem of folding of the regular triangular lattice in the
presence of a quenched random bending rigidity + or - K and a magnetic field h
(conjugate to the local normal vectors to the triangles). The randomness in the
bending energy can be understood as arising from a prior marking of the lattice
with quenched creases on which folds are favored. We consider three types of
quenched randomness: (1) a ``physical'' randomness where the creases arise from
some prior random folding; (2) a Mattis-like randomness where creases are
domain walls of some quenched spin system; (3) an Edwards-Anderson-like
randomness where the bending energy is + or - K at random independently on each
bond. The corresponding (K,h) phase diagrams are determined in the hexagon
approximation of the cluster variation method. Depending on the type of
randomness, the system shows essentially different behaviors.Comment: uses harvmac (l), epsf, 17 figs included, uuencoded, tar compresse
Folding transitions of the triangular lattice with defects
A recently introduced model describing the folding of the triangular lattice
is generalized allowing for defects in the lattice and written as an Ising
model with nearest-neighbor and plaquette interactions on the honeycomb
lattice. Its phase diagram is determined in the hexagon approximation of the
cluster variation method and the crossover from the pure Ising to the pure
folding model is investigated, obtaining a quite rich structure with several
multicritical points. Our results are in very good agreement with the available
exact ones and extend a previous transfer matrix study.Comment: 16 pages, latex, 5 postscript figure
Pennsylvania Folklife Vol. 32, No. 4
• Frakturs • Apple Head Dolls are Unique • Tableware and Dutch Folklore • The Pipemaker • Wheat Weaving • Beekeeping: Past and Present • The Pennsylvania Longrifle • Festival Focus • Folk Festival Programs • Quilts • The Country Butcher • Stained Glass • Metal Casting in Sand • Is This Pure Leather? • The Horse and Carriage • Marquetry, Parquetry and Intarsia • Pennsylvania Dutch Cookinghttps://digitalcommons.ursinus.edu/pafolklifemag/1100/thumbnail.jp
- …