214 research outputs found
Smoking, season, and detection of chlamydia pneumoniae DNA in clinically stable COPD patients
BACKGROUND: The prevalence and role of Chlamydia pneumoniae in chronic obstructive pulmonary disease (COPD) remain unclear. METHODS: Peripheral blood mononuclear cells were obtained from 100 outpatients with smoking-related, clinically stable COPD, and induced sputum was obtained in 62 patients. RESULTS: Patients had mean age (standard deviation) of 65.8 (10.7) years, mean forced expiratory volume in one second of 1.34 (0.61) L, and 61 (61.0%) were male. C. pneumoniae nucleic acids were detected by nested polymerase chain reaction in 27 (27.0%). Current smoking (odds ratio {OR} = 2.6, 95% confidence interval {CI}: 1.1, 6.6, P = 0.04), season (November to April) (OR = 3.6, 95% CI: 1.4, 9.2, P = 0.007), and chronic sputum production (OR = 6.4, 95% CI: 1.8, 23.2, P = 0.005) were associated with detection of C. pneumoniae DNA. CONCLUSIONS: Prospective studies are needed to examine the role of C. pneumoniae nucleic acid detection in COPD disease symptoms and progression
Novel insights into the aetiology and pathophysiology of increased airway inflammation during COPD exacerbations
Airway inflammation increases during acute exacerbations of COPD. Extrinsic factors, such as airway infections, increased air pollution, and intrinsic factors, such as increased oxidative stress and altered immunity may contribute to this increase. The evidence for this and the potential mechanisms by which various aetiological agents increase inflammation during COPD exacerbations is reviewed. The pathophysiologic consequences of increased airway inflammation during COPD exacerbations are also discussed. This review aims to establish a cause and effect relationship between etiological factors of increased airway inflammation and COPD exacerbations based on recently published data. Although it can be speculated that reducing inflammation may prevent and/or treat COPD exacerbations, the existing anti-inflammatory treatments are modestly effective
A 'snip' in time: what is the best age to circumcise?
<p>Abstract</p> <p>Background</p> <p>Circumcision is a common procedure, but regional and societal attitudes differ on whether there is a need for a male to be circumcised and, if so, at what age. This is an important issue for many parents, but also pediatricians, other doctors, policy makers, public health authorities, medical bodies, and males themselves.</p> <p>Discussion</p> <p>We show here that infancy is an optimal time for clinical circumcision because an infant's low mobility facilitates the use of local anesthesia, sutures are not required, healing is quick, cosmetic outcome is usually excellent, costs are minimal, and complications are uncommon. The benefits of infant circumcision include prevention of urinary tract infections (a cause of renal scarring), reduction in risk of inflammatory foreskin conditions such as balanoposthitis, foreskin injuries, phimosis and paraphimosis. When the boy later becomes sexually active he has substantial protection against risk of HIV and other viral sexually transmitted infections such as genital herpes and oncogenic human papillomavirus, as well as penile cancer. The risk of cervical cancer in his female partner(s) is also reduced. Circumcision in adolescence or adulthood may evoke a fear of pain, penile damage or reduced sexual pleasure, even though unfounded. Time off work or school will be needed, cost is much greater, as are risks of complications, healing is slower, and stitches or tissue glue must be used.</p> <p>Summary</p> <p>Infant circumcision is safe, simple, convenient and cost-effective. The available evidence strongly supports infancy as the optimal time for circumcision.</p
- …