18,031 research outputs found

    Ontology acquisition and exchange of evolutionary product-brokering agents

    Get PDF
    Agent-based electronic commerce (e-commerce) has been booming with the development of the Internet and agent technologies. However, little effort has been devoted to exploring the learning and evolving capabilities of software agents. This paper addresses issues of evolving software agents in e-commerce applications. An agent structure with evolution features is proposed with a focus on internal hierarchical knowledge. We argue that knowledge base of agents should be the cornerstone for their evolution capabilities, and agents can enhance their knowledge bases by exchanging knowledge with other agents. In this paper, product ontology is chosen as an instance of knowledge base. We propose a new approach to facilitate ontology exchange among e-commerce agents. The ontology exchange model and its formalities are elaborated. Product-brokering agents have been designed and implemented, which accomplish the ontology exchange process from request to integration

    An incremental approach to genetic algorithms based classification

    Get PDF
    Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multi-agent environment. Four new approaches with different initialization schemes are proposed. They keep the old solutions and use an “integration” operation to integrate them with new elements to accommodate new attributes, while biased mutation and crossover operations are adopted to further evolve a reinforced solution. The simulation results on benchmark classification data sets show that the proposed approaches can deal with the arrival of new input attributes and integrate them with the original input space. It is also shown that the proposed approaches can be successfully used for incremental learning and improve classification rates as compared to the retraining GA. Possible applications for continuous incremental training and feature selection are also discussed

    Cooperative co-evolution of GA-based classifiers based on input increments

    Get PDF
    Genetic algorithms (GAs) have been widely used as soft computing techniques in various applications, while cooperative co-evolution algorithms were proposed in the literature to improve the performance of basic GAs. In this paper, a new cooperative co-evolution algorithm, namely ECCGA, is proposed in the application domain of pattern classification. Concurrent local and global evolution and conclusive global evolution are proposed to improve further the classification performance. Different approaches of ECCGA are evaluated on benchmark classification data sets, and the results show that ECCGA can achieve better performance than the cooperative co-evolution genetic algorithm and normal GA. Some analysis and discussions on ECCGA and possible improvement are also presented

    Acoustic based safety emergency vehicle detection for intelligent transport systems

    Get PDF
    A system has been investigated for the detection of incoming direction of an emergency vehicle. Acoustic detection methods based on a cross microphone array have been implemented. It is shown that source detection based on time delay estimation outperforms sound intensity techniques, although both techniques perform well for the application. The relaying of information to the driver as a warning signal has been investigated through the use of ambisonic technology and a 4 speaker array which is ubiquitous in most modern vehicles. Simulations show that accurate warning information may be relayed to the driver and afford correct action
    corecore