4,363 research outputs found

    From white elephant to Nobel Prize: Dennis Gabor’s wavefront reconstruction

    Get PDF
    Dennis Gabor devised a new concept for optical imaging in 1947 that went by a variety of names over the following decade: holoscopy, wavefront reconstruction, interference microscopy, diffraction microscopy and Gaboroscopy. A well-connected and creative research engineer, Gabor worked actively to publicize and exploit his concept, but the scheme failed to capture the interest of many researchers. Gabor’s theory was repeatedly deemed unintuitive and baffling; the technique was appraised by his contemporaries to be of dubious practicality and, at best, constrained to a narrow branch of science. By the late 1950s, Gabor’s subject had been assessed by its handful of practitioners to be a white elephant. Nevertheless, the concept was later rehabilitated by the research of Emmett Leith and Juris Upatnieks at the University of Michigan, and Yury Denisyuk at the Vavilov Institute in Leningrad. What had been judged a failure was recast as a success: evaluations of Gabor’s work were transformed during the 1960s, when it was represented as the foundation on which to construct the new and distinctly different subject of holography, a re-evaluation that gained the Nobel Prize for Physics for Gabor alone in 1971. This paper focuses on the difficulties experienced in constructing a meaningful subject, a practical application and a viable technical community from Gabor’s ideas during the decade 1947-1957

    A new approximation algorithm for the multilevel facility location problem

    Get PDF
    In this paper we propose a new integer programming formulation for the multi-level facility location problem and a novel 3-approximation algorithm based on LP rounding. The linear program we are using has a polynomial number of variables and constraints, being thus more efficient than the one commonly used in the approximation algorithms for this type of problems

    On the black-box complexity of Sperner's Lemma

    Full text link
    We present several results on the complexity of various forms of Sperner's Lemma in the black-box model of computing. We give a deterministic algorithm for Sperner problems over pseudo-manifolds of arbitrary dimension. The query complexity of our algorithm is linear in the separation number of the skeleton graph of the manifold and the size of its boundary. As a corollary we get an O(n)O(\sqrt{n}) deterministic query algorithm for the black-box version of the problem {\bf 2D-SPERNER}, a well studied member of Papadimitriou's complexity class PPAD. This upper bound matches the Ω(n)\Omega(\sqrt{n}) deterministic lower bound of Crescenzi and Silvestri. The tightness of this bound was not known before. In another result we prove for the same problem an Ω(n4)\Omega(\sqrt[4]{n}) lower bound for its probabilistic, and an Ω(n8)\Omega(\sqrt[8]{n}) lower bound for its quantum query complexity, showing that all these measures are polynomially related.Comment: 16 pages with 1 figur

    Quantum Holography

    Get PDF
    We propose to make use of quantum entanglement for extracting holographic information about a remote 3-D object in a confined space which light enters, but from which it cannot escape. Light scattered from the object is detected in this confined space entirely without the benefit of spatial resolution. Quantum holography offers this possibility by virtue of the fourth-order quantum coherence inherent in entangled beams.Comment: 7 pages, submitted to Optics Expres

    Performance Analysis of Network-Assisted Two-Hop D2D Communications

    Full text link
    Network-assisted single-hop device-to-device (D2D) communication can increase the spectral and energy efficiency of cellular networks by taking advantage of the proximity, reuse, and hop gains when radio resources are properly managed between the cellular and D2D layers. In this paper we argue that D2D technology can be used to further increase the spectral and energy efficiency if the key D2D radio resource management algorithms are suitably extended to support network assisted multi-hop D2D communications. Specifically, we propose a novel, distributed utility maximizing D2D power control (PC) scheme that is able to balance spectral and energy efficiency while taking into account mode selection and resource allocation constraints that are important in the integrated cellular-D2D environment. Our analysis and numerical results indicate that multi-hop D2D communications combined with the proposed PC scheme can be useful not only for harvesting the potential gains previously identified in the literature, but also for extending the coverage of cellular networks.Comment: 6 pages and 7 figure

    Dielectric matrix and plasmon dispersion in strongly coupled electronic bilayer liquids

    Full text link
    We develop a dielectric matrix and analyze plasmon dispersion in strongly coupled charged-particle bilayers in the quantum domain. The formulation is based on the classical quasi-localized charge approximation (QLCA) and extends the QLCA formalism into the quantum domain. Its development, which parallels that of 2D companion paper [Phys. Rev. E 70, 026406 (2004)] by three of the authors, generalizes the single-layer scalar formalism therein to a bilayer matrix formalism. Using pair correlation function data generated from diffusion Monte Carlo simulations, we calculate the dispersion of the in-phase and out-of-phase plasmon modes over a wide range of in-layer coupling values and layer spacings. The out-of-phase spectrum exhibits an exchange-correlation induced long-wavelength energy gap in contrast to earlier predictions of acoustic dispersion softened by exchange-correlations. The energy gap is similar to what has been previously predicted for classical charged-particle bilayers and subsequently confirmed by recent molecular dynamics computer simulations.Comment: 53 pages including 15 Figures with their captions. Submitted to Physical Review
    • 

    corecore