29 research outputs found

    A rapid method for immunotitration of influenza viruses using flow cytometry

    No full text
    Reliable assays for accurate titration of influenza virus in infectious samples are pivotal to both influenza research and vaccine development. A titration assay adopted commonly for this purpose is the plaque assay on Madin-Darby canine kidney (MDCK) cells, despite it being time and labour consuming. A novel assay is described for titration of influenza viruses based on the detection of intracellular viral nucleoprotein (NP) by fluorescence-activated cell sorting (FACS). By using a panel of viruses of different type, subtype and origin, it is demonstrated that there is a mathematical correlation between titres measured by immunotitration and by classical plaque assay on MDCK cells. Moreover, the availability of NP antibodies specific for type A or type B influenza virus ensures the specificity of the assay. Based on speed, accuracy and specificity, it is concluded that the FACS-based immunotitration of influenza virus represents a valid and efficient alternative to the classical plaque assa

    Human HLA class I- and HLA class II-restricted cloned cytotoxic T lymphocytes identify a cluster of epitopes on the measles virus fusion protein.

    Get PDF
    The transmembrane fusion (F) glycoprotein of measles virus is an important target antigen of human HLA class I- and class II-restricted cytotoxic T lymphocytes (CTL). Genetically engineered F proteins and nested sets of synthetic peptides spanning the F protein were used to determine sequences of F recognized by a number of F-specific CTL clones. Combined N- and C-terminal deletions of the respective peptides revealed that human HLA class I and HLA class II-restricted CTL efficiently recognize nonapeptides or decapeptides representing epitopes of F. Three distinct sequences recognized by three different HLA class II (DQw1, DR2, and DR4/w53)-restricted CTL clones appear to cluster between amino acids 379 and 466 of F, thus defining an important T-cell epitope area of F. Within this same region, a nonamer peptide of F was found to be recognized by an HLA-B27-restricted CTL clone, as expected on the basis of the structural homology between this peptide and other known HLA-B27 binding peptides
    corecore