441 research outputs found

    Rotor Spectra, Berry Phases, and Monopole Fields: from Antiferromagnets to QCD

    Full text link
    The order parameter of a finite system with a spontaneously broken continuous global symmetry acts as a quantum mechanical rotor. Both antiferromagnets with a spontaneously broken SU(2)sSU(2)_s spin symmetry and massless QCD with a broken SU(2)L×SU(2)RSU(2)_L \times SU(2)_R chiral symmetry have rotor spectra when considered in a finite volume. When an electron or hole is doped into an antiferromagnet or when a nucleon is propagating through the QCD vacuum, a Berry phase arises from a monopole field and the angular momentum of the rotor is quantized in half-integer units.Comment: 4 page

    Theoretical Physics in the Twentieth Century

    Get PDF

    A note on the uniqueness of D=4 N=1 Supergravity

    Get PDF
    We investigate in 4 spacetime dimensions, all the consistent deformations of the lagrangian L2+L3/2{\cal L}_2+{\cal L}_{{3/2}}, which is the sum of the Pauli-Fierz lagrangian L2{\cal L}_2 for a free massless spin 2 field and the Rarita-Schwinger lagrangian L3/2{\cal L}_{{3/2}} for a free massless spin 3/2 field. Using BRST cohomogical techniques, we show, under the assumptions of locality, Poincar\'e invariance, conservation of the number of gauge symmetries and the number of derivatives on each fields, that N=1 D=4 supergravity is the only consistent interaction between a massless spin 2 and a massless spin 3/2 field. We do not assume general covariance. This follows automatically, as does supersymmetry invariance. Various cohomologies related to conservations laws are also given.Comment: 22+1 pages, LaTeX. References adde

    Production of non-Abelian tensor gauge bosons. Tree amplitudes in generalized Yang-Mills theory and BCFW recursion relation

    Full text link
    The BCFW recursion relation allows to calculate tree-level scattering amplitudes in generalized Yang-Mills theory and, in particular, four-particle amplitudes for the production rate of non-Abelian tensor gauge bosons of arbitrary high spin in the fusion of two gluons. The consistency of the calculations in different kinematical channels is fulfilled when all dimensionless cubic coupling constants between vector bosons (gluons) and high spin non-Abelian tensor gauge bosons are equal to the Yang-Mills coupling constant. There are no high derivative cubic vertices in the generalized Yang-Mills theory. The amplitudes vanish as complex deformation parameter tends to infinity, so that there is no contribution from the contour at infinity. We derive a generalization of the Parke-Taylor formula in the case of production of two tensor gauge bosons of spin-s and N gluons (jets). The expression is holomorhic in the spinor variables of the scattered particles, exactly as the MHV gluon amplitude is, and reduces to the gluonic MHV amplitude when s=1. In generalized Yang-Mills theory the tree level n-particle scattering amplitudes with all positive helicities vanish, but tree amplitudes with one negative helicity particle are already nonzero.Comment: 19 pages, LaTex fil

    Finite Size Effects in Thermal Field Theory

    Full text link
    We consider a neutral self-interacting massive scalar field defined in a d-dimensional Euclidean space. Assuming thermal equilibrium, we discuss the one-loop perturbative renormalization of this theory in the presence of rigid boundary surfaces (two parallel hyperplanes), which break translational symmetry. In order to identify the singular parts of the one-loop two-point and four-point Schwinger functions, we use a combination of dimensional and zeta-function analytic regularization procedures. The infinities which occur in both the regularized one-loop two-point and four-point Schwinger functions fall into two distinct classes: local divergences that could be renormalized with the introduction of the usual bulk counterterms, and surface divergences that demand countertems concentrated on the boundaries. We present the detailed form of the surface divergences and discuss different strategies that one can assume to solve the problem of the surface divergences. We also briefly mention how to overcome the difficulties generated by infrared divergences in the case of Neumann-Neumann boundary conditions.Comment: 31 pages, latex, to appear in J. Math. Phy

    Dark Matter Relic Abundance and Scalar-Tensor Dark Energy

    Get PDF
    Scalar-tensor theories of gravity provide a consistent framework to accommodate an ultra-light quintessence scalar field. While the equivalence principle is respected by construction, deviations from General Relativity and standard cosmology may show up at nucleosynthesis, CMB, and solar system tests of gravity. After imposing all the bounds coming from these observations, we consider the expansion rate of the universe at WIMP decoupling, showing that it can lead to an enhancement of the dark matter relic density up to few orders of magnitude with respect to the standard case. This effect can have an impact on supersymmetric candidates for dark matter.Comment: 12 pages, 13 figures; V2: references added, matches published versio

    Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Get PDF
    Ambient relative humidity (RH) determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σ<sub>sp</sub>) is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σ<sub>sp</sub> at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors <i>f</i>(RH)=σ<sub>sp</sub>(RH)/σ<sub>sp</sub>(dry) from a 1-month campaign (May 2008) at the high alpine site Jungfraujoch (3580 m a.s.l.), Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the <i>f</i>(RH) is available so far. At this site, <i>f</i>(RH=85%) varied between 1.2 and 3.3. Measured <i>f</i>(RH) agreed well with <i>f</i>(RH) calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good <i>f</i>(RH) predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σ<sub>sp</sub>(dry) as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σ<sub>sp</sub>, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol

    Effective Lagrangian from Higher Curvature Terms: Absence of vDVZ Discontinuity in AdS Space

    Get PDF
    We argue that the van Dam-Veltman-Zakharov discontinuity arising in the M20M^2 \to 0 limit of the massive graviton through an explicit Pauli-Fierz mass term could be absent in anti de Sitter space. This is possible if the graviton can acquire mass spontaneously from the higher curvature terms or/and the massless limit M20M^2\to 0 is attained faster than the cosmological constant Λ0\Lambda \to 0. We discuss the effects of higher-curvature couplings and of an explicit cosmological term (Λ\Lambda) on stability of such continuity and of massive excitations.Comment: 23 pages, Latex, the version to appear in Class. Quant. Gra

    On Non-Linear Actions for Massive Gravity

    Full text link
    In this work we present a systematic construction of the potentially ghost-free non-linear massive gravity actions. The most general action can be regarded as a 2-parameter deformation of a minimal massive action. Further extensions vanish in 4 dimensions. The general mass term is constructed in terms of a "deformed" determinant from which this property can clearly be seen. In addition, our formulation identifies non-dynamical terms that appear in previous constructions and which do not contribute to the equations of motion. We elaborate on the formal structure of these theories as well as some of their implications.Comment: v3: 22 pages, minor comments added, version to appear in JHE
    corecore