168 research outputs found

    Mining Methylation for Early Detection of Common Cancers

    Get PDF
    A single method that detects multiple common cancer types at an early stage would have the biggest payoff for cancer control, say Brena and colleagues

    Widespread Genotype-Phenotype Correlations in Intellectual Disability

    Get PDF
    Background: Linking genotype to phenotype is a major aim of genetics research, yet the underlying biochemical mechanisms of many complex conditions continue to remain elusive. Recent research provides evidence that relevant gene-phenotype associations are discoverable in the study of intellectual disability (ID). Here we expand on that work, identifying distinctive gene interaction modules with unique enrichment patterns reflective of associated clinical features in ID.Methods: Two hundred twelve forms of monogenic ID were curated according to comorbidities with autism and epilepsy. These groups were further subdivided according to secondary clinical manifestations of complex vs. simple facial dysmorphia and neurodegenerative-like features due to their clinical prominence, modest symptom overlap, and probable etiological divergence. An aggregate gene interaction ID network for these phenotype subgroups was discovered via a public database of known gene interactions: protein-protein, genetic, and mRNA coexpression. Additional annotation resources (Gene Ontology, Human Phenotype Ontology, TRANSFAC/JASPAR, and KEGG/WikiPathways) were utilized to assess functional and phenotypic enrichment patterns within subgroups.Results: Phenotypic analysis revealed high rates of complex facial dysmorphia in ID with comorbid autism. In contrast, neurodegenerative-like features were overrepresented in ID with epilepsy. Network analysis subsequently showed that gene groups divided according to clinical features of interest resulted in distinctive interaction clusters, with unique functional enrichments according to gene set.Conclusions: These data suggest that specific comorbid and secondary clinical features in ID are predictive of underlying genotype. In summary, ID form unique clusters, which are comprised of individual conditions with remarkable genotypic and phenotypic overlap

    Hydra -- A Federated Data Repository over NDN

    Full text link
    Today's big data science communities manage their data publication and replication at the application layer. These communities utilize myriad mechanisms to publish, discover, and retrieve datasets - the result is an ecosystem of either centralized, or otherwise a collection of ad-hoc data repositories. Publishing datasets to centralized repositories can be process-intensive, and those repositories do not accept all datasets. The ad-hoc repositories are difficult to find and utilize due to differences in data names, metadata standards, and access methods. To address the problem of scientific data publication and storage, we have designed Hydra, a secure, distributed, and decentralized data repository made of a loose federation of storage servers (nodes) provided by user communities. Hydra runs over Named Data Networking (NDN) and utilizes the State Vector Sync (SVS) protocol that lets individual nodes maintain a "global view" of the system. Hydra provides a scalable and resilient data retrieval service, with data distribution scalability achieved via NDN's built-in data anycast and in-network caching and resiliency against individual server failures through automated failure detection and maintaining a specific degree of replication. Hydra utilizes "Favor", a locally calculated numerical value to decide which nodes will replicate a file. Finally, Hydra utilizes data-centric security for data publication and node authentication. Hydra uses a Network Operation Center (NOC) to bootstrap trust in Hydra nodes and data publishers. The NOC distributes user and node certificates and performs the proof-of-possession challenges. This technical report serves as the reference for Hydra. It outlines the design decisions, the rationale behind them, the functional modules, and the protocol specifications

    Functional genomics of drought stress response in rice: transcript mapping of annotated unigenes of an indica rice (Oryza sativa L. cv. Nagina 22)

    Get PDF
    Rice being one of the widely cultivated cereals across diverse agroecological systems, is prone to high yield losses due to recurring droughts. In India, drought is a major constraint of rice production and accounts for as much as 15% of yield losses during some years. Conventional plant breeding techniques though cumbersome and time-consuming, have been immensely helpful in releasing drought-tolerant varieties. However, this is not adequate to cope up with the future demand for rice, as drought seems to spread to more regions and seasons across the country. Understanding the genes that govern rice plant architecture and response to drought stress is urgently needed to enhance breeding rice with improved drought tolerance. In order to identify genes associated with drought stress response and their temporal and spatial regulation, we took the genomic approach. By generating a large set of expressed sequence tags (ESTs) from cDNA libraries of drought-stressed seedlings and transcript profiling, we identified 589 genes presumed to be involved in drought stress. These 5814 ESTs are assembled into 2094 contigs and localized onto chromosome arms. We present here the physical map of the 2094 unigene set along with 589 annotated putative stress responsive genes of rice. Further, using ESTs, a few of drought quantitative trait loci (QTLs) have been dissected and putative candidate genes identified. This will be useful to rice researchers as ready reference source for breeding through developing candidate gene markers, molecular dissection of QTLs associated with drought stress and map-based cloning

    Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using <it>in silico </it>simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence.</p> <p>Results</p> <p>The best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size) reads (15L-5P) on <it>Arabidopsis</it>. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most.</p> <p>Conclusions</p> <p>BAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies.</p

    Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    Get PDF
    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bena, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Godoy Bürki, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; Argentin
    corecore