1,567 research outputs found

    Can Nonlinear Hydromagnetic Waves Support a Self-Gravitating Cloud?

    Get PDF
    Using self-consistent magnetohydrodynamic (MHD) simulations, we explore the hypothesis that nonlinear MHD waves dominate the internal dynamics of galactic molecular clouds. We employ an isothermal equation of state and allow for self-gravity. We adopt ``slab-symmetry,'' which permits motions v\bf v_\perp and fields B\bf B_\perp perpendicular to the mean field, but permits gradients only parallel to the mean field. The Alfv\'en speed vAv_A exceeds the sound speed csc_s by a factor 3303-30. We simulate the free decay of a spectrum of Alfv\'en waves, with and without self-gravity. We also perform simulations with and without self-gravity that include small-scale stochastic forcing. Our major results are as follows: (1) We confirm that fluctuating transverse fields inhibit the mean-field collapse of clouds when the energy in Alfv\'en- like disturbances remains comparable to the cloud's gravitational binding energy. (2) We characterize the turbulent energy spectrum and density structure in magnetically-dominated clouds. The spectra evolve to approximately v,k2B,k2/4πρksv_{\perp,\,k}^2\approx B_{\perp,\,k}^2/4\pi\rho\propto k^{-s} with s2s\sim 2, i.e. approximately consistent with a ``linewidth-size'' relation σv(R)R1/2\sigma_v(R) \propto R^{1/2}. The simulations show large density contrasts, with high density regions confined in part by the fluctuating magnetic fields. (3) We evaluate the input power required to offset dissipation through shocks, as a function of cs/vAc_s/v_A, the velocity dispersion σv\sigma_v, and the scale λ\lambda of the forcing. In equilibrium, the volume dissipation rate is 5.5(cs/va)1/2(λ/L)1/2×ρσv3/L5.5(c_s/v_a)^{1/2} (\lambda/L)^{-1/2}\times \rho \sigma_v^3/L, for a cloud of linear size LL and density ρ\rho. (4) Somewhat speculatively, we apply our results to a ``typical'' molecular cloud. The mechanical power input requiredComment: Accepted for publication in Ap.J. 47 pages, 13 postscript figures. Report also available at http://cfa-www.harvard.edu/~gammie/MHD.p

    Dissipation in Compressible MHD Turbulence

    Full text link
    We report results of a three dimensional, high resolution (up to 512^3) numerical investigation of supersonic compressible magnetohydrodynamic turbulence. We consider both forced and decaying turbulence. The model parameters are appropriate to conditions found in Galactic molecular clouds. We find that the dissipation time of turbulence is of order the flow crossing time or smaller, even in the presence of strong magnetic fields. About half the dissipation occurs in shocks. Weak magnetic fields are amplified and tangled by the turbulence, while strong fields remain well ordered.Comment: 5 pages, 3 Postscript figures, LaTeX, accepted by Ap.J.Let

    On The Nature of Variations in the Measured Star Formation Efficiency of Molecular Clouds

    Get PDF
    Measurements of the star formation efficiency (SFE) of giant molecular clouds (GMCs) in the Milky Way generally show a large scatter, which could be intrinsic or observational. We use magnetohydrodynamic simulations of GMCs (including feedback) to forward-model the relationship between the true GMC SFE and observational proxies. We show that individual GMCs trace broad ranges of observed SFE throughout collapse, star formation, and disruption. Low measured SFEs (<<1%) are "real" but correspond to early stages, the true "per-freefall" SFE where most stars actually form can be much larger. Very high (>>10%) values are often artificially enhanced by rapid gas dispersal. Simulations including stellar feedback reproduce observed GMC-scale SFEs, but simulations without feedback produce 20x larger SFEs. Radiative feedback dominates among mechanisms simulated. An anticorrelation of SFE with cloud mass is shown to be an observational artifact. We also explore individual dense "clumps" within GMCs and show that (with feedback) their bulk properties agree well with observations. Predicted SFEs within the dense clumps are ~2x larger than observed, possibly indicating physics other than feedback from massive (main sequence) stars is needed to regulate their collapse.Comment: Fixed typo in the arXiv abstrac

    Neuropsychological and neurobehavioral outcome following childhood arterial ischemic stroke: Attention deficits, emotional dysregulation, and executive dysfunction.

    Get PDF
    Objectives. To investigate neuropsychological and neurobehavioral outcome in children with arterial ischemic stroke (AIS). Background. Childhood stroke can have consequences on motor, cognitive, and behavioral development. We present a cross-sectional study of neuropsychological and neurobehavioral outcome at least one year poststroke in a uniquely homogeneous sample of children who had experienced AIS. Method. Forty-nine children with AIS aged 6 to 18 years were recruited from a specialist clinic. Neuropsychological measures of intelligence, reading comprehension, attention, and executive function were administered. A triangulation of data collection included questionnaires completed by the children, their parents, and teachers, rating behavior, executive functions, and emotions. Key Findings. Focal neuropsychological vulnerabilities in attention (response inhibition and dual attention) and executive function were found, beyond general intellectual functioning, irrespective of hemispheric side of stroke. Difficulties with emotional and behavioral regulation were also found. Consistent with an "early plasticity" hypothesis, earlier age of stroke was associated with better performance on measures of executive function. Conclusions. A significant proportion of children poststroke are at long-term risk of difficulties with emotional regulation, executive function, and attention. Data also suggest that executive functions are represented in widespread networks in the developing brain and are vulnerable to unilateral injury

    Chemistry and radiative shielding in star forming galactic disks

    Full text link
    To understand the conditions under which dense, molecular gas is able to form within a galaxy, we post-process a series of three-dimensional galactic-disk-scale simulations with ray-tracing based radiative transfer and chemical network integration to compute the equilibrium chemical and thermal state of the gas. In performing these simulations we vary a number of parameters, such as the ISRF strength, vertical scale height of stellar sources, cosmic ray flux, to gauge the sensitivity of our results to these variations. Self-shielding permits significant molecular hydrogen (H2) abundances in dense filaments around the disk midplane, accounting for approximately ~10-15% of the total gas mass. Significant CO fractions only form in the densest, n>~10^3 cm^-3, gas where a combination of dust, H2, and self-shielding attenuate the FUV background. We additionally compare these ray-tracing based solutions to photochemistry with complementary models where photo-shielding is accounted for with locally computed prescriptions. With some exceptions, these local models for the radiative shielding length perform reasonably well at reproducing the distribution and amount of molecular gas as compared with a detailed, global ray tracing calculation. Specifically, an approach based on the Jeans Length with a T=40K temperature cap performs the best in regards to a number of different quantitative measures based on the H2 and CO abundances.Comment: 21 Pages, 15 figures. Submitted to MNRAS. Comments welcom

    Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models

    Get PDF
    We use 3D numerical MHD simulations to follow the evolution of cold, turbulent, gaseous systems with parameters representing GMC conditions. We study three cloud simulations with varying mean magnetic fields, but identical initial velocity fields. We show that turbulent energy is reduced by a factor two after 0.4-0.8 flow crossing times (2-4 Myr), and that the magnetically supercritical cloud models collapse after ~6 Myr, while the subcritical cloud does not collapse. We compare density, velocity, and magnetic field structure in three sets of snapshots with matched Mach numbers. The volume and column densities are both log-normally distributed, with mean volume density a factor 3-6 times the unperturbed value, but mean column density only a factor 1.1-1.4 times the unperturbed value. We use a binning algorithm to investigate the dependence of kinetic quantities on spatial scale for regions of column density contrast (ROCs). The average velocity dispersion for the ROCs is only weakly correlated with scale, similar to the mean size-linewidth relation for clumps within GMCs. ROCs are often superpositions of spatially unconnected regions that cannot easily be separated using velocity information; the same difficulty may affect observed GMC clumps. We analyze magnetic field structure, and show that in the high density regime, total magnetic field strengths increase with density with logarithmic slope 1/3 -2/3. Mean line-of-sight magnetic field strengths vary widely across a projected cloud, and do not correlate with column density. We compute simulated interstellar polarization maps at varying orientations, and determine that the Chandrasekhar-Fermi formula multiplied by a factor ~0.5 yields a good estimate of the plane-of sky magnetic field strength provided the dispersion in polarization angles is < 25 degrees.Comment: 56 pages, 25 figures; Ap.J., accepte
    corecore