633 research outputs found

    Nuclear Breakup of Borromean Nuclei

    Get PDF
    We study the eikonal model for the nuclear-induced breakup of Borromean nuclei, using Li11 and He6 as examples. The full eikonal model is difficult to realize because of six-dimensional integrals, but a number of simplifying approximations are found to be accurate. The integrated diffractive and one-nucleon stripping cross sections are rather insensitive to the neutron-neutron correlation, but the two-nucleon stripping does show some dependence on the correlation. The distribution of excitation energy in the neutron-core final state in one-neutron stripping reactions is quite sensitive to the shell structure of the halo wave function. Experimental data favor models with comparable amounts of s- and p-wave in the Li11 halo.Comment: 34 pages REVTeX, 14 postscript figures. Small changes in comparison with experimen

    Comparing non-perturbative models of the breakup of neutron-halo nuclei

    Full text link
    Breakup reactions of loosely-bound nuclei are often used to extract structure and/or astrophysical information. Here we compare three non-perturbative reaction theories often used when analyzing breakup experiments, namely the continuum discretized coupled channel model, the time-dependent approach relying on a semiclassical approximation, and the dynamical eikonal approximation. Our test case consists of the breakup of 15C on Pb at 68 MeV/nucleon and 20 MeV/nucleon.Comment: 8 pages, 6 figures, accepted for publication in Phys. Rev.

    Mechanisms of direct reactions with halo nuclei

    Full text link
    Halo nuclei are exotic nuclei which exhibit a strongly clusterised structure: they can be seen as one or two valence nucleons loosely bound to a core. Being observed at the ridge of the valley of stability, halo nuclei are studied mostly through reactions. In this contribution the reaction models most commonly used to analyse experimental data are reviewed and compared to one another. A reaction observable built on the ratio of two angular distributions is then presented. This ratio enables removing most of the sensitivity to the reaction mechanism, which emphasises the effects of nuclear structure on the reaction.Comment: Invited talk given by Pierre Capel at the "10th International Conference on Clustering Aspects of Nuclear Structure and Dynamics" (Cluster12), Debrecen, Hungary, 24-28 September 2012. To appear in the Cluster12 Proceedings in the Open Access Journal of Physics: Conference Series (JPCS). (5 pages, 3 figures

    Recent developments in the eikonal description of the breakup of exotic nuclei

    Full text link
    The study of exotic nuclear structures, such as halo nuclei, is usually performed through nuclear reactions. An accurate reaction model coupled to a realistic description of the projectile is needed to correctly interpret experimental data. In this contribution, we briefly summarise the assumptions made within the modelling of reactions involving halo nuclei. We describe briefly the Continuum-Discretised Coupled Channel method (CDCC) and the Dynamical Eikonal Approximation (DEA) in particular and present a comparison between them for the breakup of 15C on Pb at 68AMeV. We show the problem faced by the models based on the eikonal approximation at low energy and detail a correction that enables their extension down to lower beam energies. A new reaction observable is also presented. It consists of the ratio between angular distributions for two different processes, such as elastic scattering and breakup. This ratio is completely independent of the reaction mechanism and hence is more sensitive to the projectile structure than usual reaction observables, which makes it a very powerful tool to study exotic structures far from stability.Comment: Contribution to the proceedings of the XXI International School on Nuclear Physics and Applications & the International Symposium on Exotic Nuclei, dedicated to the 60th Anniversary of the JINR (Dubna) (Varna, Bulgaria, 6-12 September 2015), 7 pages, 4 figure

    Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies

    Full text link
    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the "stiffness" of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the QQ-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.Comment: Submitted to Phys. Rev. Lett., 5 pages, 3 figure

    RPA approach to rotational symmetry restoration in a three-level Lipkin model

    Get PDF
    We study an extended Lipkin-Meshkov-Glick model that permits a transition to a deformed phase with a broken continuous symmetry. Unlike simpler models, one sees a persistent zero-frequency Goldstone mode past the transition point into the deformed phase. We found that the RPA formula for the correlation energy provides a useful correction to the Hartree-Fock energy when the number of particle N satisfies N > 3, and becomes accurate for large N. We conclude that the RPA correlation energy formula offers a promising way to improve the Hartree-Fock energy in a systematic theory of nuclear binding energies.Comment: RevTex, 11 pages, 3 postscript figure

    Breakup of 17^{17}F on 208^{208}Pb near the Coulomb barrier

    Full text link
    Angular distributions of oxygen produced in the breakup of 17^{17}F incident on a 208^{208}Pb target have been measured around the grazing angle at beam energies of 98 and 120 MeV. The data are dominated by the proton stripping mechanism and are well reproduced by dynamical calculations. The measured breakup cross section is approximately a factor of 3 less than that of fusion at 98 MeV. The influence of breakup on fusion is discussed.Comment: 7 pages, 8 figure

    S17(0) Determined from the Coulomb Breakup of 83 MeV/nucleon 8B

    Get PDF
    A kinematically complete measurement was made of the Coulomb dissociation of 8B nuclei on a Pb target at 83 MeV/nucleon. The cross section was measured at low relative energies in order to infer the astrophysical S factor for the 7Be(p,gamma)8B reaction. A first-order perturbation theory analysis of the reaction dynamics including E1, E2, and M1 transitions was employed to extract the E1 strength relevant to neutrino-producing reactions in the solar interior. By fitting the measured cross section from Erel = 130 keV to 400 keV, we find S17(0) = 17.8 (+1.4, -1.2) eV b

    Coulomb and nuclear breakup of 8^8B

    Get PDF
    The cross sections for the (8^8B,7^7Be-pp) breakup reaction on 58^{58}Ni and 208^{208}Pb targets at the beam energies of 25.8 MeV and 415 MeV have been calculated within a one-step prior-form distorted-wave Born approximation. The relative contributions of Coulomb and nuclear breakup of dipole and quadrupole multipolarities as well as their interference have been determined. The nuclear breakup contributions are found to be substantial in the angular distributions of the 7^7Be fragment for angles in the range of 30^\circ - 80^\circ at 25.8 MeV beam energy. The Coulomb-nuclear interference terms make the dipole cross section larger than that of quadrupole even at this low beam energy. However, at the incident energy of 415 MeV, these effects are almost negligible in the angular distributions of the (7^7Be-p) coincidence cross sections at angles below 4^\circ.Comment: Revised version, accepted for publication in Phys. Rev.

    Radiative capture and electromagnetic dissociation involving loosely bound nuclei: the 8^8B example

    Get PDF
    Electromagnetic processes in loosely bound nuclei are investigated using an analytical model. In particular, electromagnetic dissociation of 8^8B is studied and the results of our analytical model are compared to numerical calculations based on a three-body picture of the 8^8B bound state. The calculation of energy spectra is shown to be strongly model dependent. This is demonstrated by investigating the sensitivity to the rms intercluster distance, the few-body behavior, and the effects of final state interaction. In contrast, the fraction of the energy spectrum which can be attributed to E1 transitions is found to be almost model independent at small relative energies. This finding is of great importance for astrophysical applications as it provides us with a new tool to extract the E1 component from measured energy spectra. An additional, and independent, method is also proposed as it is demonstrated how two sets of experimental data, obtained with different beam energy and/or minimum impact parameter, can be used to extract the E1 component.Comment: Submitted to Phys. Rev. C. 10 pages, 7 figure
    corecore