1,635 research outputs found
Influence of confinement by smooth and rough walls on particle dynamics in dense hard-sphere suspensions
We used video microscopy and particle tracking to study the dynamics of confined hard-sphere suspensions. Our fluids consisted of 1.1-μm-diameter silica spheres suspended at volume fractions of 0.33–0.42 in water-dimethyl sulfoxide. Suspensions were confined in a quasiparallel geometry between two glass surfaces: a millimeter-sized rough sphere and a smooth flat wall. First, as the separation distance (H) is decreased from 18 to 1 particle diameter, a transition takes place from a subdiffusive behavior (as in bulk) at large H, to completely caged particle dynamics at small H. These changes are accompanied by a strong decrease in the amplitude of the mean-square displacement (MSD) in the horizontal plane parallel to the confining surfaces. In contrast, the global volume fraction essentially remains constant when H is decreased. Second, measuring the MSD as a function of distance from the confining walls, we found that the MSD is not spatially uniform but smaller close to the walls. This effect is the strongest near the smooth wall where layering takes place. Although confinement also induces local variations in volume fraction, the spatial variations in MSD can be attributed only partially to this effect. The changes in MSD are predominantly a direct effect of the confining surfaces. Hence, both the wall roughness and the separation distance (H) influence the dynamics in confined geometries
Extracting local surface charges and charge regulation behavior from atomic force microscopy measurements at heterogeneous solid-electrolyte interfaces
We present a method to determine the local surface charge of solid–liquid interfaces from Atomic Force Microscopy (AFM) measurements that takes into account shifts of the adsorption/desorption equilibria of protons and ions as the cantilever tip approaches the sample. We recorded AFM force distance curves in dynamic mode with sharp tips on heterogeneous silica surfaces partially covered by gibbsite nano-particles immersed in an aqueous electrolyte with variable concentrations of dissolved NaCl and KCl at pH 5.8. Forces are analyzed in the framework of Derjaguin–Landau–Verwey–Overbeek (DLVO) theory in combination with a charge regulation boundary that describes adsorption and desorption reactions of protons and ions. A systematic method to extract the equilibrium constants of these reactions by simultaneous least-squared fitting to experimental data for various salt concentrations is developed and is shown to yield highly consistent results for silica-electrolyte interfaces. For gibbsite-electrolyte interfaces, the surface charge can be determined, yet, an unambiguous identification of the relevant surface speciation reactions is not possible, presumably due to a combination of intrinsic chemical complexity and heterogeneity of the nano-particle surfaces
A numerical technique to simulate display pixels based on electrowetting
We present a numerical simulation technique to calculate the deformation of interfaces between a conductive and non-conductive fluid as well as the motion of liquid–liquid–solid three-phase contact lines under the influence of externally applied electric fields in electrowetting configuration. The technique is based on the volume of fluid method as implemented in the OpenFOAM framework, using a phase fraction parameter to track the different phases. We solve the combined electrohydrodynamic problem by coupling the equations for electric effects—Gauss’s law and a charge transport equation—to the Navier–Stokes equations of fluid flow. Specifically, we use a multi-domain approach to solving for the electric field in the solid and liquid dielectric parts of the system. A Cox–Voinov boundary condition is introduced to describe the dynamic contact angle of moving contact lines. We present several benchmark problems with analytical solutions to validate the simulation model. Subsequently, the model is used to study the dynamics of an electrowetting-based display pixel. We demonstrate good qualitative agreement between simulation results of the opening and closing of a pixel with experimental tests of the identical reference geometry
A numerical technique to simulate display pixels based on electrowetting
We present a numerical simulation technique to calculate the deformation of interfaces between a conductive and non-conductive fluid as well as the motion of liquid–liquid–solid three-phase contact lines under the influence of externally applied electric fields in electrowetting configuration. The technique is based on the volume of fluid method as implemented in the OpenFOAM framework, using a phase fraction parameter to track the different phases. We solve the combined electrohydrodynamic problem by coupling the equations for electric effects—Gauss’s law and a charge transport equation—to the Navier–Stokes equations of fluid flow. Specifically, we use a multi-domain approach to solving for the electric field in the solid and liquid dielectric parts of the system. A Cox–Voinov boundary condition is introduced to describe the dynamic contact angle of moving contact lines. We present several benchmark problems with analytical solutions to validate the simulation model. Subsequently, the model is used to study the dynamics of an electrowetting-based display pixel. We demonstrate good qualitative agreement between simulation results of the opening and closing of a pixel with experimental tests of the identical reference geometry
In-chip direct laser writing of a centimeter-scale acoustic micromixer
A centimeter-scale micromixer was fabricated by two-photon polymerization inside a closed microchannel using direct laser writing. The structure consists of a repeating pattern of 20  μm×20  μm×155  μm acrylate pillars and extends over 1.2 cm. Using external ultrasonic actuation, the micropillars locally induce streaming with flow speeds of 30  μm s −1 . The fabrication method allows for large flexibility and more complex design
Crystalline polymeric carbon dioxide stable at megabar pressures
The nature and stability of carbon dioxide under extreme conditions relevant to the Earth’s mantle is still under debate, in view of its possible role within the deep carbon cycle. Here, the authors perform high-pressure experiments providing evidence that polymeric crystalline CO2 is stable under megabaric conditions
Imaging Local Acoustic Pressure in Microchannels
A method for determining the spatially resolved acoustic field inside a water-filled microchannel is presented. The acoustic field, both amplitude and phase, is determined by measuring the change of the index of refraction of the water due to local pressure using stroboscopic illumination. Pressure distributions are measured for the fundamental pressure resonance in the water and two higher harmonic modes. By combining measurement at a range of excitation frequencies, a frequency map of modes is made, from which the spectral line width an
- …