74 research outputs found
Skin and liver diseases induced in flounder (Platichthys flesus) after long-term exposure to contaminated sediments in large-scale mesocosms.
Disease development in flounder (Platichthys flesus) was studied over a period of 3 years in three large mesocosms (40 m x 40 m x 3 m). Two of the mesocosms contained clean sand and the third, sharing a common water circulation with one of the clean-sand mesocosms, was stocked with contaminated dredged spoil. In this way, one of the clean-sand mesocosms was indirectly polluted via the water phase, and analysis of contaminant concentrations in sediments and flounder tissues showed that it had a status intermediate between the other two. Random samples of the flounder populations from the indirectly polluted and reference mesocosms were examined every 2 months for epidermal diseases (lymphocystis, skin ulcers, fin rot) and then released. In addition, every 6 months, random samples of fish from all three mesocosms were sacrificed for histological and chemical investigation. With regard to the development of epidermal disease, the results showed little difference between the reference mesocosm and the indirectly polluted mesocosm, with the exception that lymphocystis was significantly elevated in the indirectly polluted mesocosm. Although pollution may be a risk factor in the etiology of this disease, such a relationship would probably be obscured under field conditions due to variation arising from other factors. Histopathological analysis of the livers revealed in total four cases of hepatocellular adenoma (1.5% of sampled population) in fish from the polluted mesocosms, the first occurring after 2.5 years of exposure in fish from the indirectly polluted mesocosm. Furthermore, several other liver lesions, including foci of cellular alteration and hydropic vacuolated lesions, developed during the course of the experiment before tumor formation was apparent. Prevalences of these conditions were very much lower in the reference mesocosm than in the two polluted mesocosms. Densities of melanomacrophage centers in the liver showed a similar trend. The findings clearly indicate that long-term exposure to chemically contaminated dredged spoil can induce liver neoplasia and other liver lesions in flounder at contaminant levels comparable to those found in the natural environment
Hepatic gene expression in flounder chronically exposed to multiply polluted estuarine sediment: Absence of classical exposure ‘biomarker’ signals and induction of inflammatory, innate immune and apoptotic pathways
The effects of chronic long term exposure to multiply-polluted environments on fish are not well understood, but environmental surveys suggest that such exposure may cause a variety of pathologies, including cancers. Transcriptomic profiling has recently been used to assess gene expression in European flounder (Platichthys flesus) living in several polluted and clean estuaries. However, the gene expression changes detected were not unequivocally elicited by pollution, most likely due to the confounding effects of natural estuarine ecosystem variables. In this study flounder from an uncontaminated estuary were held on clean or polluted sediments in mesocosms, allowing control of variables such as salinity, temperature, and diet. After 7 months flounder were removed from each mesocosm and hepatocytes prepared from fish exposed to clean or polluted sediments. The hepatocytes were treated with benzo(a)pyrene (BAP), estradiol (E2), copper, a mixture of these three, or with the vehicle DMSO. A flounder cDNA microarray was then used to measure hepatocyte transcript abundance after each treatment. The results show that long term chronic exposure to a multiply-polluted sediment causes increases in the expression of mRNAs coding for proteins of the endogenous apoptotic program, of innate immunity and inflammation. Contrary to expectation, the expression of mRNAs which are commonly used as biomarkers of environmental exposure to particular contaminants were not changed, or were changed contrary to expectation. However, acute treatment of hepatocytes from flounder from both clean and polluted sediments with BAP or E2 caused the expected changes in the expression of these biomarkers. Thus transcriptomic analysis of flounder exposed long-term to chronic pollution causes a different pattern of gene expression than in fish acutely treated with single chemicals, and reveals novel potential biomarkers of environmental contaminant exposure. These novel biomarkers include Diablo, a gene involved in apoptotic pathways and highly differentially regulated by both chronic and acute exposure to multiple pollutants
Serum-Induced Differentiation of Glioblastoma Neurospheres Leads to Enhanced Migration/Invasion Capacity That Is Associated with Increased MMP9
Glioblastoma (GBM) is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs), have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In this study, we addressed the question whether the differentiation status of GBM cells is associated with their invasive capacity. For this, several primary GBM cell lines were used, cultured either as neurospheres known to enrich for GSCs or in medium supplemented with 10% FCS that promotes differentiation. The differentiation state of the cells was confirmed by determining the expression of stem cell and differentiation markers. The migration/invasion potential of these cells was tested using in vitro assays and intracranial mouse models. Interestingly, we found that serum-induced differentiation enhanced the invasive potential of GBM cells, which was associated with enhanced MMP9 expression. Chemical inhibition of MMP9 significantly reduced the invasive potential of differentiated cells in vitro. Furthermore, the serum-differentiated cells could revert back to an undifferentiated/stem cell state that were able to form neurospheres, although with a reduced efficiency as compared to non-differentiated counterparts. We propose a model in which activation of the differentiation program in GBM cells enhances their infiltrative potential and that depending on microenvironmental cues a significant portion of these cells are able to revert back to an undifferentiated state with enhanced tumorigenic potential. Thus, effective therapy should target both GSCs and differentiated offspring and targeting of differentiation-associated pathways may offer therapeutic opportunities to reduce invasive growth of GBM
Multiple Nuclear Gene Phylogenetic Analysis of the Evolution of Dioecy and Sex Chromosomes in the Genus Silene
In the plant genus Silene, separate sexes and sex chromosomes are believed to have evolved twice. Silene species that are wholly or largely hermaphroditic are assumed to represent the ancestral state from which dioecy evolved. This assumption is important for choice of outgroup species for inferring the genetic and chromosomal changes involved in the evolution of dioecy, but is mainly based on data from a single locus (ITS). To establish the order of events more clearly, and inform outgroup choice, we therefore carried out (i) multi-nuclear-gene phylogenetic analyses of 14 Silene species (including 7 hermaphrodite or gynodioecious species), representing species from both Silene clades with dioecious members, plus a more distantly related outgroup, and (ii) a BayesTraits character analysis of the evolution of dioecy. We confirm two origins of dioecy within this genus in agreement with recent work on comparing sex chromosomes from both clades with dioecious species. We conclude that sex chromosomes evolved after the origin of Silene and within a clade that includes only S. latifolia and its closest relatives. We estimate that sex chromosomes emerged soon after the split with the ancestor of S. viscosa, the probable closest non-dioecious S. latifolia relative among the species included in our study
- …