6,436 research outputs found
Dangerous Liaisons: Working Women and Sexual Justice in the American Civil War
The American Civil War drew thousands of white and black women into paid and unpaid work for the Union and Confederate armies.  While the armies provided some women with a reliable income, their very proximity also represented a dangerous liaison that drew them into closer contact with Union troops that rendered them vulnerable to sexual assault.  By 1865, more than four hundred Union soldiers had been court-martialed for sexual crimes against white and black women and girls. At the war’s onset, the Union’s judge advocate corps, which tried soldiers for violations of the articles of war, was ill-prepared to adjudicate sexual crimes. By the war’s end, however, an ethic of sexual justice emerged from Union military courts to provide women with a means of redressing their wartime sexual violation. Â
Yield Reduction from Controlle Flooding of Corn
This ISU study was designed to provide more accuracy in estimating flood damages for those concerned with watershed development. But it also reveals just what foes on when a corn field suffers from excess water
Soar-mode v5.0 User’s Manual for Soar release 5.2 and 6.0
Soar-mode is a major mode within the GNU-Emacs editor. It provides an integrated, structured editor for editing,
running, and debugging Soar models on the production level. Productions are treated as first class objects. With
keystroke (or menu) commands productions can be directly loaded, examined, and queried about their current match
status. Listings of the productions that have fired or are about to fire can be automatically displayed. Soar-mode
includes and organizes, for the first time, complete on-line documentation on Soar and a simple browser to examine this information
Recommended from our members
Quaestor: Query web caching for database-as-a-service providers
Today, web performance is primarily governed by round-trip latencies between end devices and cloud services. To improve performance, services need to minimize the delay of accessing data. In this paper, we propose a novel approach to low latency that relies on existing content delivery and web caching infrastructure. The main idea is to enable application-independent caching of query results and records with tunable consistency guarantees, in particular bounded staleness. Q
uaestor
(Query Store) employs two key concepts to incorporate both expiration-based and invalidation-based web caches: (1) an Expiring Bloom Filter data structure to indicate potentially stale data, and (2) statistically derived cache expiration times to maximize cache hit rates. Through a distributed query invalidation pipeline, changes to cached query results are detected in real-time. The proposed caching algorithms offer a new means for data-centric cloud services to trade latency against staleness bounds, e.g. in a database-as-a-service. Q
uaestor
is the core technology of the backend-as-a-service platform Baqend, a cloud service for low-latency websites. We provide empirical evidence for Q
uaestor
's scalability and performance through both simulation and experiments. The results indicate that for read-heavy workloads, up to tenfold speed-ups can be achieved through Q
uaestor
's caching.
</jats:p
Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law
The exchange of light pseudoscalars between fermions leads to a
spin-independent potential in order g^4, where g is the Yukawa
pseudoscalar-fermion coupling constant. This potential gives rise to detectable
violations of both the weak equivalence principle (WEP) and the gravitational
inverse-square law (ISL), even if g is quite small. We show that when
previously derived WEP constraints are combined with those arisingfrom ISL
tests, a direct experimental limit on the Yukawa coupling of light
pseudoscalars to neutrons can be inferred for the first time (g_n^2/4pi < 1.6
\times 10^-7), along with a new (and significantly improved) limit on the
coupling of light pseudoscalars to protons.Comment: 12 pages, Revtex, with 1 Postscript figure (submitted to Physical
Review Letters
The Role of Helium Stars in the Formation of Double Neutron Stars
We have calculated the evolution of 60 model binary systems consisting of
helium stars in the mass range of M_He= 2.5-6Msun with a 1.4Msun neutron star
companion to investigate the formation of double neutron star systems.Orbital
periods ranging from 0.09 to 2 days are considered, corresponding to Roche lobe
overflow starting from the helium main sequence to after the ignition of carbon
burning in the core. We have also examined the evolution into a common envelope
phase via secular instability, delayed dynamical instability, and the
consequence of matter filling the neutron star's Roche lobe. The survival of
some close He-star neutron-star binaries through the last mass transfer episode
(either dynamically stable or unstable mass transfer phase) leads to the
formation of extremely short-period double neutron star systems (with
P<~0.1days). In addition, we find that systems throughout the entire calculated
mass range can evolve into a common envelope phase, depending on the orbital
period at the onset of mass transfer. The critical orbital period below which
common envelope evolution occurs generally increases with M_He. In addition, a
common envelope phase may occur during a short time for systems characterized
by orbital periods of 0.1-0.5 days at low He-star masses (~ 2.6-3.3Msun).
The existence of a short-period population of double neutron stars increases
the predicted detection rate of inspiral events by ground-based
gravitational-wave detectors and impacts their merger location in host galaxies
and their possible role as gamma-ray burst progenitors. We use a set of
population synthesis calculations and investigate the implications of the
mass-transfer results for the orbital properties of DNS populations.Comment: 30 pages, Latex (AASTeX), 1 table, 8 figures. To appear in ApJ, v592
n1 July 20, 200
Magneto-structural properties of the layered quasi-2D triangular-lattice antiferromagnets CsCuClBr for = 0,1,2 and 4
We present a study of the magnetic susceptibility under variable
hydrostatic pressure on single crystals of CsCuClBr. This
includes the border compounds \textit{x} = 0 and 4, known as good realizations
of the distorted triangular-lattice spin-1/2 Heisenberg antiferromagnet, as
well as the isostructural stoichiometric systems CsCuClBr and
CsCuClBr. For the determination of the exchange coupling
constants and , data were fitted by a
model \cite{Schmidt2015}. Its application, validated for the
border compounds, yields a degree of frustration / = 0.47 for
CsCuClBr and / 0.63 - 0.78 for
CsCuClBr, making these systems particular interesting
representatives of this family. From the evolution of the magnetic
susceptibility under pressure up to about 0.4\,GPa, the maximum pressure
applied, two observations were made for all the compounds investigated here.
First, we find that the overall energy scale, given by +
), increases under pressure, whereas the ratio
/ remains unchanged in this pressure range. These experimental
observations are in accordance with the results of DFT calculations performed
for these materials. Secondly, for the magnetoelastic coupling constants,
extraordinarily small values are obtained. We assign these observations to a
structural peculiarity of this class of materials
The Turn-On of Mass Transfer in AM CVn Binaries: Implications for RX J0806+1527 and RX J1914+2456
We report on evolutionary calculations of the onset of mass transfer in AM
CVn binaries, treating the donor's evolution in detail. We show that during the
early contact phase, while the mass transfer rate, \Mdot, is increasing,
gravity wave (GW) emission continues to drive the binary to shorter orbital
period, \Porb. We argue that the phase where \Mdot > 0 and \nudot > 0
(\nu = 1/\Porb) can last between and yrs, significantly longer
than previously estimated. These results are applied to RX J0806+1527 (\Porb =
321 s) and RX J914+2456 (\Porb=569 s), both of which have measured \nudot >
0. \emph{Thus, a \nudot > 0 does not select between the unipolar inductor
and accretion driven models proposed as the source of X-rays in these systems}.
For the accretion model, we predict for RX J0806 that \ddot{\nu} \approx
\ee{1.0-1.5}{-28} Hz s and argue that timing observations can probe
at this level with a total yr baseline. We also place
constraints on each system's initial parameters given current observational
data.Comment: 5 pages, 3 figures, accepted to ApJ
- …