3,229 research outputs found

    Application of the coherent state formalism to multiply excited states

    Full text link
    A general expression is obtained for the matrix element of an m-body operator between coherent states constructed from multiple orthogonal coherent boson species. This allows the coherent state formalism to be applied to states possessing an arbitrarily large number of intrinsic excitation quanta. For illustration, the formalism is applied to the two-dimensional vibron model [U(3) model], to calculate the energies of all excited states in the large-N limit.Comment: LaTeX (iopart); 10 pages; to be published in J. Phys.

    Kondo effect in two-dimensional disordered electron systems

    Full text link
    We investigate the Kondo effect in two-dimensional disordered electron systems using a finite-temperature quantum Monte Carlo method. Depending on the position of a magnetic impurity, the local moment is screened or unscreened by the spin of the conduction electron. On the basis of the results, we show that the distribution of the Kondo temperature becomes wide and the weight at TK=0T_K=0 becomes large as randomness increases. The average susceptibility shows a weak power-law or logarithmic divergence at low temperature, indicating a non-Fermi-liquid behavior.Comment: 2 pages, 2 figures, to be published in supplement of J. Phys. Soc. Japan, Proceedings of Localisation 2002, (Tokyo, Japan, 2002

    Degeneracy in excited state quantum phase transitions of two-level bosonic models and its influence on system dynamics

    Full text link
    Excited state quantum phase transitions in collective many-body quantum systems influence the system spectral properties due to changing degeneracy patterns in different phases. We report a fundamental difference in the nature of the degeneracy for boson two-level models, depending on the dimension of the space where the models were defined. To illustrate the consequences, we assess the validity of an out-of-time-order correlator as a possible order operator for excited state quantum phase transitions in different models

    Disorder, inhomogeneity and spin dynamics in f-electron non-Fermi liquid systems

    Full text link
    Muon spin rotation and relaxation (ÎĽ\muSR) experiments have yielded evidence that structural disorder is an important factor in many f-electron-based non-Fermi-liquid (NFL) systems. Disorder-driven mechanisms for NFL behaviour are suggested by the observed broad and strongly temperature-dependent ÎĽ\muSR (and NMR) linewidths in several NFL compounds and alloys. Local disorder-driven theories (Kondo disorder, Griffiths-McCoy singularity) are, however, not capable of describing the time-field scaling seen in muon spin relaxation experiments, which suggest cooperative and critical spin fluctuations rather than a distribution of local fluctuation rates. A strong empirical correlation is established between electronic disorder and slow spin fluctuations in NFL materialsComment: 24 pages, 15 figures, submitted to J. Phys.: Condens. Matte

    Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOs4_{4}Sb12_{12}

    Full text link
    Transverse-field muon spin rotation (μ\muSR) experiments in the heavy-fermion superconductor PrOs4_{4}Sb12_{12} (Tc=1.85T_{c}=1.85 K) suggest that the superconducting penetration depth λ(T)\lambda(T) is temperature-independent at low temperatures, consistent with a gapped quasiparticle excitation spectrum. In contrast, radiofrequency (rf) inductive measurements yield a stronger temperature dependence of λ(T)\lambda(T), indicative of point nodes in the gap. This discrepancy appears to be related to the multiband structure of PrOs4_{4}Sb12_{12}. Muon Knight shift measurements in PrOs4_{4}Sb12_{12} suggest that the perturbing effect of the muon charge on the neighboring Pr3+^{3+} crystalline electric field is negligibly small, and therefore is unlikely to cause the difference between the μ\muSR and rf results.Comment: 10 pages, 7 figure

    Intravenous delivery of adeno-associated virus 9-encoded IGF-1Ea propeptide improves post-infarct cardiac remodelling

    No full text
    The insulin-like growth factor Ea propeptide (IGF-1Ea) is a powerful enhancer of cardiac muscle growth and regeneration, also blocking age-related atrophy and beneficial in multiple skeletal muscle diseases. The therapeutic potential of IGF-1Ea compared with mature IGF-1 derives from its local action in the area of synthesis. We have developed an adeno-associated virus (AAV) vector for IGF-1Ea delivery to the heart to treat mice after myocardial infarction and examine the reparative effects of local IGF-1Ea production on left ventricular remodelling. A cardiotropic AAV9 vector carrying a cardiomyocyte-specific IGF-1Ea-luciferase bi-cistronic gene expression cassette (AAV9.IGF-1Ea) was administered intravenously to infarcted mice, 5 h after ischemia followed by reperfusion (I/R), as a model of myocardial infarction. Virally encoded IGF-1Ea in the heart improved global left ventricular function and remodelling, as measured by wall motion and thickness, 28 days after delivery, with higher viral titers yielding better improvement. The present study demonstrates that single intravenous AAV9-mediated IGF-1Ea Gene Therapy represents a tissue-targeted therapeutic approach to prevent the adverse remodelling after myocardial infarct

    Monte Carlo simulation of ice models

    Full text link
    We propose a number of Monte Carlo algorithms for the simulation of ice models and compare their efficiency. One of them, a cluster algorithm for the equivalent three colour model, appears to have a dynamic exponent close to zero, making it particularly useful for simulations of critical ice models. We have performed extensive simulations using our algorithms to determine a number of critical exponents for the square ice and F models.Comment: 32 pages including 15 postscript figures, typeset in LaTeX2e using the Elsevier macro package elsart.cl
    • …
    corecore