54 research outputs found

    Charged sectors, spin and statistics in quantum field theory on curved spacetimes

    Full text link
    The first part of this paper extends the Doplicher-Haag-Roberts theory of superselection sectors to quantum field theory on arbitrary globally hyperbolic spacetimes. The statistics of a superselection sector may be defined as in flat spacetime and each charge has a conjugate charge when the spacetime possesses non-compact Cauchy surfaces. In this case, the field net and the gauge group can be constructed as in Minkowski spacetime. The second part of this paper derives spin-statistics theorems on spacetimes with appropriate symmetries. Two situations are considered: First, if the spacetime has a bifurcate Killing horizon, as is the case in the presence of black holes, then restricting the observables to the Killing horizon together with "modular covariance" for the Killing flow yields a conformally covariant quantum field theory on the circle and a conformal spin-statistics theorem for charged sectors localizable on the Killing horizon. Secondly, if the spacetime has a rotation and PT symmetry like the Schwarzschild-Kruskal black holes, "geometric modular action" of the rotational symmetry leads to a spin-statistics theorem for charged covariant sectors where the spin is defined via the SU(2)-covering of the spatial rotation group SO(3).Comment: latex2e, 73 page

    The averaged null energy condition for general quantum field theories in two dimensions

    Full text link
    It is shown that the averaged null energy condition is fulfilled for a dense, translationally invariant set of vector states in any local quantum field theory in two-dimensional Minkowski spacetime whenever the theory has a mass gap and possesses an energy-momentum tensor. The latter is assumed to be a Wightman field which is local relative to the observables, generates locally the translations, is divergence-free, and energetically bounded. Thus the averaged null energy condition can be deduced from completely generic, standard assumptions for general quantum field theory in two-dimensional flat spacetime.Comment: LateX2e, 16 pages, 1 eps figur

    Scaling algebras and pointlike fields: A nonperturbative approach to renormalization

    Full text link
    We present a method of short-distance analysis in quantum field theory that does not require choosing a renormalization prescription a priori. We set out from a local net of algebras with associated pointlike quantum fields. The net has a naturally defined scaling limit in the sense of Buchholz and Verch; we investigate the effect of this limit on the pointlike fields. Both for the fields and their operator product expansions, a well-defined limit procedure can be established. This can always be interpreted in the usual sense of multiplicative renormalization, where the renormalization factors are determined by our analysis. We also consider the limits of symmetry actions. In particular, for suitable limit states, the group of scaling transformations induces a dilation symmetry in the limit theory.Comment: minor changes and clarifications; as to appear in Commun. Math. Phys.; 37 page

    Pancreatic Polypeptide Controls Energy Homeostasis via Npy6r Signaling in the Suprachiasmatic Nucleus in Mice

    Get PDF
    SummaryY-receptors control energy homeostasis, but the role of Npy6 receptors (Npy6r) is largely unknown. Young Npy6r-deficient (Npy6r−/−) mice have reduced body weight, lean mass, and adiposity, while older and high-fat-fed Npy6r−/− mice have low lean mass with increased adiposity. Npy6r−/− mice showed reduced hypothalamic growth hormone releasing hormone (Ghrh) expression and serum insulin-like growth factor-1 (IGF-1) levels relative to WT. This is likely due to impaired vasoactive intestinal peptide (VIP) signaling in the suprachiasmatic nucleus (SCN), where we found Npy6r coexpressed in VIP neurons. Peripheral administration of pancreatic polypeptide (PP) increased Fos expression in the SCN, increased energy expenditure, and reduced food intake in WT, but not Npy6r−/−, mice. Moreover, intraperitoneal (i.p.) PP injection increased hypothalamic Ghrh mRNA expression and serum IGF-1 levels in WT, but not Npy6r−/−, mice, an effect blocked by intracerebroventricular (i.c.v.) Vasoactive Intestinal Peptide (VPAC) receptors antagonism. Thus, PP-initiated signaling through Npy6r in VIP neurons regulates the growth hormone axis and body composition

    The paradigm of the area law and the structure of transversal and longitudinal lightfront degrees of freedom

    Full text link
    It is shown that an algebraically defined holographic projection of a QFT onto the lightfront changes the local quantum properties in a very drastic way. The expected ubiquitous vacuum polarization characteristic of QFT is confined to the lightray (longitudinal) direction, whereas operators whose localization is transversely separated are completely free of vacuum correlations. This unexpected ''transverse return to QM'' combined with the rather universal nature of the strongly longitudinal correlated vacuum correlations (which turn out to be described by rather kinematical chiral theories) leads to a d-2 dimensional area structure of the d-1 dimensional lightfront theory. An additive transcription in terms of an appropriately defined entropy related to the vacuum restricted to the horizon is proposed and its model independent universality aspects which permit its interpretation as a quantum candidate for Bekenstein's area law are discussed. The transverse tensor product foliation structure of lightfront degrees of freedom is essential for the simplifying aspects of the algebraic lightcone holography. Key-words: Quantum field theory; Mathematical physics, Quantum gravityComment: 16 pages latex, identical to version published in JPA: Math. Gen. 35 (2002) 9165-918

    Euclidean Gibbs states of interacting quantum anharmonic oscillators

    Full text link
    A rigorous description of the equilibrium thermodynamic properties of an infinite system of interacting ν\nu-dimensional quantum anharmonic oscillators is given. The oscillators are indexed by the elements of a countable set L⊂Rd\mathbb{L}\subset \mathbb{R}^d, possibly irregular; the anharmonic potentials vary from site to site. The description is based on the representation of the Gibbs states in terms of path measures -- the so called Euclidean Gibbs measures. It is proven that: (a) the set of such measures Gt\mathcal{G}^{\rm t} is non-void and compact; (b) every μ∈Gt\mu \in \mathcal{G}^{\rm t} obeys an exponential integrability estimate, the same for the whole set Gt\mathcal{G}^{\rm t}; (c) every μ∈Gt\mu \in \mathcal{G}^{\rm t} has a Lebowitz-Presutti type support; (d) Gt\mathcal{G}^{\rm t} is a singleton at high temperatures. In the case of attractive interaction and ν=1\nu=1 we prove that ∣Gt∣>1|\mathcal{G}^{\rm t}|>1 at low temperatures. The uniqueness of Gibbs measures due to quantum effects and at a nonzero external field are also proven in this case. Thereby, a qualitative theory of phase transitions and quantum effects, which interprets most important experimental data known for the corresponding physical objects, is developed. The mathematical result of the paper is a complete description of the set Gt\mathcal{G}^{\rm t}, which refines and extends the results known for models of this type.Comment: 60 page

    Stochastic independence in non-commutative probability theory

    No full text
    • …
    corecore