13 research outputs found

    Age and environment affect constitutive immune function in Red Knots (Calidris canutus)

    Get PDF
    We studied subspecies, age and environmental effects on constitutive immune function (natural antibody and complement titres, haptoglobin activity and leukocyte concentrations) in Red Knots (Calidris canutus). We compared C. c. islandica and C. c. canutus in the Wadden Sea and found no difference in immune function between subspecies. However, C. c. canutus on their wintering grounds in Banc d’Arguin had higher natural antibody and lower complement levels than C. c. canutus or C. c. islandica in the Wadden Sea. This suggests that immune function is determined more by the surrounding environment than by subspecies. We also compared age classes in the Wadden Sea and found that first year birds had significantly lower natural antibody levels than adults, but that second year birds no longer differed from adults. Finally, we examined the interaction of age and environment in Banc d’Arguin. We found that first year birds (but not adults) in a low quality habitat had higher leukocyte concentrations than first year birds or adults in a high quality habitat. Differences in available resources and defence needs between environments, and differences among individuals differentially distributed between sites, are likely important contributors to the variation in immune function we report. Future studies, which examine these factors on wild birds, will be important for our understanding of how animals function in their natural environment.

    Sensing of Dietary Lipids by Enterocytes: A New Role for SR-BI/CLA-1

    Get PDF
    BACKGROUND: The intestine is responsible for absorbing dietary lipids and delivering them to the organism as triglyceride-rich lipoproteins (TRL). It is important to determine how this process is regulated in enterocytes, the absorptive cells of the intestine, as prolonged postprandial hypertriglyceridemia is a known risk factor for atherosclerosis. During the postprandial period, dietary lipids, mostly triglycerides (TG) hydrolyzed by pancreatic enzymes, are combined with bile products and reach the apical membrane of enterocytes as postprandial micelles (PPM). Our aim was to determine whether these micelles induce, in enterocytes, specific early cell signaling events that could control the processes leading to TRL secretion. METHODOLOGY/PRINCIPAL FINDINGS: The effects of supplying PPM to the apex of Caco-2/TC7 enterocytes were analyzed. Micelles devoid of TG hydrolysis products, like those present in the intestinal lumen in the interprandial period, were used as controls. The apical delivery of PPM specifically induced a number of cellular events that are not induced by interprandial micelles. These early events included the trafficking of apolipoprotein B, a structural component of TRL, from apical towards secretory domains, and the rapid, dose-dependent activation of ERK and p38MAPK. PPM supply induced the scavenger receptor SR-BI/CLA-1 to cluster at the apical brush border membrane and to move from non-raft to raft domains. Competition, inhibition or knockdown of SR-BI/CLA-1 impaired the PPM-dependent apoB trafficking and ERK activation. CONCLUSIONS/SIGNIFICANCE: These results are the first evidence that enterocytes specifically sense postprandial dietary lipid-containing micelles. SR-BI/CLA-1 is involved in this process and could be a target for further study with a view to modifying intestinal TRL secretion early in the control pathway

    Transforming growth-factor-beta (TGF-beta) inhibits albumin synthesis in normal human hepatocytes and in hepatoma HepG2 cells

    No full text
    We explored the effect of transforming growth factor beta (TGF-beta), a cytokine that appears to play a central role in inflammatory events, on albumin expression by normal adult human hepatocytes and hepatoma cells. Addition of TGF-beta to primary human hepatocyte cultures resulted in a dramatic decrease in albumin accumulation and synthesis. This effect was dose-dependent, took place after a 48h incubation period and was maintained over 96h. TGF-beta-decreased albumin protein levels were associated with reduced albumin mRNA content. Actin mRNA levels were concomittantly increased. Comparable qualitative effects of TGF-beta were observed on human hepatoma HepG2 cells

    Deprivation of arginine by recombinant human arginase in prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recombinant human arginase (rhArg) has been developed for arginine deprivation therapy in cancer, and is currently under clinical investigation. During pre-clinical evaluation, rhArg has exhibited significant anti-proliferative activity in cancer cells deficient in the expression of ornithine carbamoyl transferase (OCT). Interestingly, a variety of cancer cells such as melanoma and prostate cancer deficient in argininosuccinate synthetase (ASS) are sensitive to arginine deprivation by arginine deiminase. In this study, we investigated levels of gene expression of OCT and ASS, and the effects of rhArg in human prostate cancer cells: LNCaP (androgen-dependent), PC-3 and DU-145 (both androgen-independent).</p> <p>Results</p> <p>Quantitative real-time PCR showed minimal to absent gene expression of OCT, but ample expression of ASS expression in all 3 cell lines. Cell viability assay after 72-h exposure of rhArg showed all 3 lines had half maximal inhibitory concentration less than or equal to 0.02 U/ml. Addition of ornithine to cell culture media failed to rescue these cells from rhArg-mediated cytotoxicity.</p> <p>Decreased phosphorylation of 4E-BP1, a downstream effector of mammalian target of rapamycin (mTOR), was noted in DU-145 and PC-3 after exposure to rhArg. Moreover, there was no significant apoptosis induction after arginine deprivation by rhArg in all 3 prostate cancer cell lines.</p> <p>Conclusion</p> <p>rhArg causes significant cytotoxicity in LNCaP, DU-145 and PC-3 prostate cancer cells which all demonstrate decreased OCT expression. Inhibition of mTOR manifested by hypophosphorylation of 4E-BP1 suggests autophagy is involved as alternative cell death mechanism. rhArg demonstrates a promising novel agent for prostate cancer treatment.</p
    corecore