17,457 research outputs found
How To Attain Maximum Profit In Minority Game?
What is the physical origin of player cooperation in minority game? And how
to obtain maximum global wealth in minority game? We answer the above questions
by studying a variant of minority game from which players choose among
alternatives according to strategies picked from a restricted set of strategy
space. Our numerical experiment concludes that player cooperation is the result
of a suitable size of sampling in the available strategy space. Hence, the
overall performance of the game can be improved by suitably adjusting the
strategy space size.Comment: 4 pages in revtex 4 styl
Minority Game With Peer Pressure
To study the interplay between global market choice and local peer pressure,
we construct a minority-game-like econophysical model. In this so-called
networked minority game model, every selfish player uses both the historical
minority choice of the population and the historical choice of one's neighbors
in an unbiased manner to make decision. Results of numerical simulation show
that the level of cooperation in the networked minority game differs remarkably
from the original minority game as well as the prediction of the
crowd-anticrowd theory. We argue that the deviation from the crowd-anticrowd
theory is due to the negligence of the effect of a four point correlation
function in the effective Hamiltonian of the system.Comment: 10 pages, 3 figures in revtex 4.
Local transient rheological behavior of concentrated suspensions
This paper reports experiments on the shear transient response of
concentrated non-Brownian suspensions. The shear viscosity of the suspensions
is measured using a wide-gap Couette rheometer equipped with a Particle Image
Velocimetry (PIV) device that allows measuring the velocity field. The
suspensions made of PMMA particles (31m in diameter) suspended in a
Newtonian index- and density-matched liquid are transparent enough to allow an
accurate measurement of the local velocity for particle concentrations as high
as 50%. In the wide-gap Couette cell, the shear induced particle migration is
evidenced by the measurement of the time evolution of the flow profile. A
peculiar radial zone in the gap is identified where the viscosity remains
constant. At this special location, the local particle volume fraction is taken
to be the mean particle concentration. The local shear transient response of
the suspensions when the shear flow is reversed is measured at this point where
the particle volume fraction is well defined. The local rheological
measurements presented here confirm the macroscopic measurements of
Gadala-Maria and Acrivos (1980). After shear reversal, the viscosity undergoes
a step-like reduction, decreases slower and passes through a minimum before
increasing again to reach a plateau. Upon varying the particle concentration,
we have been able to show that the minimum and the plateau viscosities do not
obey the same scaling law with respect to the particle volume fraction. These
experimental results are consistent with the scaling predicted by Mills and
Snabre (2009) and with the results of numerical simulation performed on random
suspensions [Sierou and Brady (2001)]. The minimum seems to be associated with
the viscosity of an isotropic suspension, or at least of a suspension whose
particles do not interact through non-hydrodynamic forces, while the plateau
value would correspond to the viscosity of a suspension structured by the shear
where the non-hydrodynamic forces play a crucial role
Jet mixing under the influence of a pressure gradient
Theoretical analysis of jet mixing under influence of non-constant pressure gradien
Large Universality of The Baryon Isgur--Wise Form Factor: The Group Theoretical Approach
In a previous article, it has been proved under the framework of chiral
soliton model that the same Isgur--Wise form factor describes the semileptonic
and decays in the
large limit. It is shown here that this result is in fact independent of
the chiral soliton model and is solely the consequence of the spin-flavor SU(4)
symmetry which arises in the baryon sector in the large limit.Comment: 10 pages in REVTeX, no figure
Standardization and qualification of computer programs for circuit design
Study presents methods and initial procedures which may be obtained for development of more efficient uniform network analysis input language and theoretical tools to prove equivalence of data representations
Viscous wing theory development. Volume 1: Analysis, method and results
Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers
- …