249 research outputs found
Come to the dark side! The role of functional traits in shaping dark diversity patterns of south-eastern European hoverflies
1. Dark diversity represents the set of species that can potentially inhabit a given area under particular ecological conditions, but are currently 'missing' from a site. This concept allows characterisation of the mechanisms determining why species are sometimes absent from an area that seems ecologically suitable for them. 2. The aim of this study was to determine the dark diversity of hoverflies in south-eastern Europe and to discuss the role of different functional traits that might increase the likelihood of species contributing to dark diversity. Based on expert opinion, the Syrph the Net database and known occurrences of species, the study estimated species pools, and observed and dark diversities within each of 11 defined vegetation types for 564 hoverfly species registered in south-eastern Europe. To detect the most important functional traits contributing to species being in dark diversity across different vegetation types, a random forest algorithm and respective statistics for variable importance were used. 3. The highest dark diversity was found for southwest Balkan sub-Mediterranean mixed oak forest type, whereas the lowest was in Mediterranean mixed forest type. Three larval feeding modes (saproxylic, and phytophagous on bulbs or roots) were found to be most important for determining the probability of a species contributing to hoverfly dark diversity, based on univariate correlations and random forest analysis. 4. This study shows that studying dark diversity might provide important insights into what drives community assembly in south-eastern European hoverflies, especially its missing components, and contributes to more precise conservation prioritisation of both hoverfly species and their habitats.Peer reviewe
Comparing the Prevalence of Polypharmacy and Potential Drug-Drug Interactions in Nursing Homes and in the Community Dwelling Elderly of Emilia Romagna Region
Backround: We aimed at assessing the prevalence of polypharmacy and potential drug-drug interactions (DDIs) with clinical relevance in elderly patient on Emilia Romagna area. Both outpatients and residents in nursing homes were assessed, with only partially overlapping strategies. Methods: We defined a list of 190 pairs of potentially interacting drugs, based on literature appraisal and availability of therapeutic alternatives. January-June 2018 data on drug use in patients over 65 years-old were collected from nine Local Health Authorities of Emilia Romagna: data on community-dwelling subjects were extracted from archives of reimbursed prescriptions, while drug use in a sample of nursing homes was recorded from clinical charts in one index day within the same semester. The frequency of polypharmacy (at least five or at least 10 concurrent drugs) and of each DDI was calculated. Results: In line with different rates of polypharmacy (80% vs 16%), the risk of exposure to at least one interaction was 53.7% in nursing homes and 26.4% in outpatients. Among DDIs, in nursing homes antidepressants—anxiolytics (11.9%) ranked first, followed by antidepressants—aspirin (7.4%). In outpatients, ACE-inhibitors—non-steroidal anti-inflammatory drugs (NSAIDs) reached 7.2% followed by the calcium channel blockers—α-blockers (2.4%). Discussion: Polypharmacy and risk of DDIs appeared very different in the two settings, due to both technical and clinical reasons. In order to reduce use of benzodiazepines, NSAIDs, antidepressants and relevant DDIs, 1) defining alternative options for pain relief in elderly outpatients, and 2) implementing non-pharmacological management of insomnia and anxiety in nursing homes should be prioritized
Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems
Streams and rivers in mediterranean-climate regions (med-rivers in med-regions) are ecologically unique, with flow regimes reflecting precipitation patterns. Although timing of drying and flooding is predictable, seasonal and annual intensity of these events is not. Sequential flooding and drying, coupled with anthropogenic influences make these med-rivers among the most stressed riverine habitat worldwide. Med-rivers are hotspots for biodiversity in all med-regions. Species in med-rivers require different, often opposing adaptive mechanisms to survive drought and flood conditions or recover from them. Thus, metacommunities undergo seasonal differences, reflecting cycles of river fragmentation and connectivity, which also affect ecosystem functioning. River conservation and management is challenging, and trade-offs between environmental and human uses are complex, especially under future climate change scenarios. This overview of a Special Issue on med-rivers synthesizes information presented in 21 articles covering the five med-regions worldwide: Mediterranean Basin, coastal California, central Chile, Cape region of South Africa, and southwest and southern Australia. Research programs to increase basic knowledge in less-developed med-regions should be prioritized to achieve increased abilities to better manage med-rivers
Extremely Long-Lived Stigmas Allow Extended Cross-Pollination Opportunities in a High Andean Plant
High-elevation ecosystems are traditionally viewed as environments in which predominantly autogamous breeding systems should be selected because of the limited pollinator availability. Chaetanthera renifolia (Asteraceae) is an endemic monocarpic triennial herb restricted to a narrow altitudinal range within the high Andes of central Chile (3300–3500 m a.s.l.), just below the vegetation limit. This species displays one of the larger capitulum within the genus. Under the reproductive assurance hypothesis, and considering its short longevity (monocarpic triennial), an autogamous breeding system and low levels of pollen limitation would be predicted for C. renifolia. In contrast, considering its large floral size, a xenogamous breeding system, and significant levels of pollen limitation could be expected. In addition, the increased pollination probability hypothesis predicts prolonged stigma longevity for high alpine plants. We tested these alternative predictions by performing experimental crossings in the field to establish the breeding system and to measure the magnitude of pollen limitation in two populations of C. renifolia. In addition, we measured the stigma longevity in unpollinated and open pollinated capitula, and pollinator visitation rates in the field. We found low levels of self-compatibility and significant levels of pollen limitation in C. renifolia. Pollinator visitation rates were moderate (0.047–0.079 visits per capitulum per 30 min). Although pollinator visitation rate significantly differed between populations, they were not translated into differences in achene output. Finally, C. renifolia stigma longevity of unpollinated plants was extremely long and significantly higher than that of open pollinated plants (26.3±2.8 days vs. 10.1±2.2, respectively), which gives support to the increased pollination probability hypothesis for high-elevation flowering plants. Our results add to a growing number of studies that show that xenogamous breeding systems and mechanisms to increase pollination opportunities can be selected in high-elevation ecosystems
Of Asian Forests and European Fields: Eastern U.S. Plant Invasions in a Global Floristic Context
Background: Biogeographic patterns of species invasions hold important clues to solving the recalcitrant ‘who’, ‘where’, and ‘why ’ questions of invasion biology, but the few existing studies make no attempt to distinguish alien floras (all non-native occurrences) from invasive floras (rapidly spreading species of significant management concern), nor have invasion biologists asked whether particular habitats are consistently invaded by species from particular regions. Methodology/Principal Findings: Here I describe the native floristic provenances of the 2629 alien plant taxa of the Eastern Deciduous Forest of the Eastern U.S. (EUS), and contrast these to the subset of 449 taxa that EUS management agencies have labeled ‘invasive’. Although EUS alien plants come from all global floristic regions, nearly half (45%) have native ranges that include central and northern Europe or the Mediterranean (39%). In contrast, EUS invasive species are most likely to come from East Asia (29%), a pattern that is magnified when the invasive pool is restricted to species that are native to a single floristic region (25 % from East Asia, compared to only 11 % from northern/central Europe and 2 % from the Mediterranean). Moreover, East Asian invaders are mostly woody (56%, compared to just 23 % of the total alien flora) and are significantly more likely to invade intact forests and riparian areas than European species, which dominate managed or disturbed ecosystems. Conclusions/Significance: These patterns suggest that the often-invoked ‘imperialist dogma ’ view of global invasion
- …