130 research outputs found

    A Note on Edwards' Hypothesis for Zero-Temperature Ising Dynamics

    Get PDF
    We give a simple criterion for checking the so called Edwards' hypothesis in certain zero-temperature, ferromagnetic spin-flip dynamics and use it to invalidate the hypothesis in various examples in dimension one and higher.Comment: 11 pages, 4 figure

    Scaling Limit and Critical Exponents for Two-Dimensional Bootstrap Percolation

    Get PDF
    Consider a cellular automaton with state space {0,1}Z2\{0,1 \}^{{\mathbb Z}^2} where the initial configuration ω0\omega_0 is chosen according to a Bernoulli product measure, 1's are stable, and 0's become 1's if they are surrounded by at least three neighboring 1's. In this paper we show that the configuration ωn\omega_n at time n converges exponentially fast to a final configuration ωˉ\bar\omega, and that the limiting measure corresponding to ωˉ\bar\omega is in the universality class of Bernoulli (independent) percolation. More precisely, assuming the existence of the critical exponents β\beta, η\eta, ν\nu and γ\gamma, and of the continuum scaling limit of crossing probabilities for independent site percolation on the close-packed version of Z2{\mathbb Z}^2 (i.e., for independent *-percolation on Z2{\mathbb Z}^2), we prove that the bootstrapped percolation model has the same scaling limit and critical exponents. This type of bootstrap percolation can be seen as a paradigm for a class of cellular automata whose evolution is given, at each time step, by a monotonic and nonessential enhancement.Comment: 15 page

    Clusters and Recurrence in the Two-Dimensional Zero-Temperature Stochastic Ising Model

    Full text link
    We analyze clustering and (local) recurrence of a standard Markov process model of spatial domain coarsening. The continuous time process, whose state space consists of assignments of +1 or -1 to each site in Z2{\bf Z}^2, is the zero-temperature limit of the stochastic homogeneous Ising ferromagnet (with Glauber dynamics): the initial state is chosen uniformly at random and then each site, at rate one, polls its 4 neighbors and makes sure it agrees with the majority, or tosses a fair coin in case of a tie. Among the main results (almost sure, with respect to both the process and initial state) are: clusters (maximal domains of constant sign) are finite for times t<t< \infty, but the cluster of a fixed site diverges (in diameter) as tt \to \infty; each of the two constant states is (positive) recurrent. We also present other results and conjectures concerning positive and null recurrence and the role of absorbing states.Comment: 16 pages, 1 figur

    Two-Dimensional Scaling Limits via Marked Nonsimple Loops

    Full text link
    We postulate the existence of a natural Poissonian marking of the double (touching) points of SLE(6) and hence of the related continuum nonsimple loop process that describes macroscopic cluster boundaries in 2D critical percolation. We explain how these marked loops should yield continuum versions of near-critical percolation, dynamical percolation, minimal spanning trees and related plane filling curves, and invasion percolation. We show that this yields for some of the continuum objects a conformal covariance property that generalizes the conformal invariance of critical systems. It is an open problem to rigorously construct the continuum objects and to prove that they are indeed the scaling limits of the corresponding lattice objects.Comment: 25 pages, 5 figure

    Non-Backtracking Loop Soups and Statistical Mechanics on Spin Networks

    Get PDF
    We introduce and study a Markov field on the edges of a graph G\mathcal{G} in dimension d\textit{d} ≥ 2 whose configurations are spin networks. The field arises naturally as the edge-occupation field of a Poissonian model (a soup) of non-backtracking loops and walks characterized by a spatial Markov property such that, conditionally on the value of the edge-occupation field on a boundary set that splits the graph into two parts, the distributions of the loops and arcs contained in the two parts are independent of each other. The field has a Gibbs distribution with a Hamiltonian given by a sum of terms which involve only edges incident on the same vertex. Its free energy density and other quantities can be computed exactly, and their critical behavior analyzed, in any dimension.The first author acknowledges the support of Vidi Grant 639.032.916 of the Netherlands Organization for Scientific Research (NWO). The second author was partially supported by the Knut and Alice Wallenberg Foundation.This is the final version of the article. It first appeared from Springer via https://doi.org/10.1007/s00023-016-0524-

    Cardy's Formula for Certain Models of the Bond-Triangular Type

    Full text link
    We introduce and study a family of 2D percolation systems which are based on the bond percolation model of the triangular lattice. The system under study has local correlations, however, bonds separated by a few lattice spacings act independently of one another. By avoiding explicit use of microscopic paths, it is first established that the model possesses the typical attributes which are indicative of critical behavior in 2D percolation problems. Subsequently, the so called Cardy-Carleson functions are demonstrated to satisfy, in the continuum limit, Cardy's formula for crossing probabilities. This extends the results of S. Smirnov to a non-trivial class of critical 2D percolation systems.Comment: 49 pages, 7 figure

    Conformal loop ensembles and the stress-energy tensor

    Full text link
    We give a construction of the stress-energy tensor of conformal field theory (CFT) as a local "object" in conformal loop ensembles CLE_\kappa, for all values of \kappa in the dilute regime 8/3 < \kappa <= 4 (corresponding to the central charges 0 < c <= 1, and including all CFT minimal models). We provide a quick introduction to CLE, a mathematical theory for random loops in simply connected domains with properties of conformal invariance, developed by Sheffield and Werner (2006). We consider its extension to more general regions of definition, and make various hypotheses that are needed for our construction and expected to hold for CLE in the dilute regime. Using this, we identify the stress-energy tensor in the context of CLE. This is done by deriving its associated conformal Ward identities for single insertions in CLE probability functions, along with the appropriate boundary conditions on simply connected domains; its properties under conformal maps, involving the Schwarzian derivative; and its one-point average in terms of the "relative partition function." Part of the construction is in the same spirit as, but widely generalizes, that found in the context of SLE_{8/3} by the author, Riva and Cardy (2006), which only dealt with the case of zero central charge in simply connected hyperbolic regions. We do not use the explicit construction of the CLE probability measure, but only its defining and expected general properties.Comment: 49 pages, 3 figures. This is a concatenated, reduced and simplified version of arXiv:0903.0372 and (especially) arXiv:0908.151

    Trivial, Critical and Near-critical Scaling Limits of Two-dimensional Percolation

    Get PDF
    It is natural to expect that there are only three possible types of scaling limits for the collection of all percolation interfaces in the plane: (1) a trivial one, consisting of no curves at all, (2) a critical one, in which all points of the plane are surrounded by arbitrarily large loops and every deterministic point is almost surely surrounded by a countably infinite family of nested loops with radii going to zero, and (3) an intermediate one, in which every deterministic point of the plane is almost surely surrounded by a largest loop and by a countably infinite family of nested loops with radii going to zero. We show how one can prove this using elementary arguments, with the help of known scaling relations for percolation. The trivial limit corresponds to subcritical and supercritical percolation, as well as to the case when the density p approaches the critical probability, p_c, sufficiently slowly as the lattice spacing is sent to zero. The second type corresponds to critical percolation and to a faster approach of p to p_c. The third, or near-critical, type of limit corresponds to an intermediate speed of approach of p to p_c. The fact that in the near-critical case a deterministic point is a.s. surrounded by a largest loop demonstrates the persistence of a macroscopic correlation length in the scaling limit and the absence of scale invariance.Comment: 15 pages, 3 figure

    Exact Correlation Functions in the Brownian Loop Soup

    Full text link
    We compute analytically and in closed form the four-point correlation function in the plane, and the two-point correlation function in the upper half-plane, of layering vertex operators in the two dimensional conformally invariant system known as the Brownian Loop Soup. These correlation functions depend on multiple continuous parameters: the insertion points of the operators, the intensity of the soup, and the charges of the operators. In the case of the four-point function there is non-trivial dependence on five continuous parameters: the cross-ratio, the intensity, and three real charges. The four-point function is crossing symmetric. We analyze its conformal block expansion and discover a previously unknown set of new conformal primary operators.Comment: 28 pages, 2 figures; Eq. (20) correcte

    A simple stochastic model for the dynamics of condensation

    Full text link
    We consider the dynamics of a model introduced recently by Bialas, Burda and Johnston. At equilibrium the model exhibits a transition between a fluid and a condensed phase. For long evolution times the dynamics of condensation possesses a scaling regime that we study by analytical and numerical means. We determine the scaling form of the occupation number probabilities. The behaviour of the two-time correlations of the energy demonstrates that aging takes place in the condensed phase, while it does not in the fluid phase.Comment: 8 pages, plain tex, 2 figure
    corecore