189 research outputs found
Therapeutic and educational objectives in robot assisted play for children with autism
“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio
Increased insolation threshold for runaway greenhouse processes on Earth like planets
Because the solar luminosity increases over geological timescales, Earth
climate is expected to warm, increasing water evaporation which, in turn,
enhances the atmospheric greenhouse effect. Above a certain critical
insolation, this destabilizing greenhouse feedback can "runaway" until all the
oceans are evaporated. Through increases in stratospheric humidity, warming may
also cause oceans to escape to space before the runaway greenhouse occurs. The
critical insolation thresholds for these processes, however, remain uncertain
because they have so far been evaluated with unidimensional models that cannot
account for the dynamical and cloud feedback effects that are key stabilizing
features of Earth's climate. Here we use a 3D global climate model to show that
the threshold for the runaway greenhouse is about 375 W/m, significantly
higher than previously thought. Our model is specifically developed to quantify
the climate response of Earth-like planets to increased insolation in hot and
extremely moist atmospheres. In contrast with previous studies, we find that
clouds have a destabilizing feedback on the long term warming. However,
subsident, unsaturated regions created by the Hadley circulation have a
stabilizing effect that is strong enough to defer the runaway greenhouse limit
to higher insolation than inferred from 1D models. Furthermore, because of
wavelength-dependent radiative effects, the stratosphere remains cold and dry
enough to hamper atmospheric water escape, even at large fluxes. This has
strong implications for Venus early water history and extends the size of the
habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013.
Accepted version before journal editing and with Supplementary Informatio
The excitation spectrum of mesoscopic proximity structures
We investigate one aspect of the proximity effect, viz., the local density of
states of a superconductor-normal metal sandwich. In contrast to earlier work,
we allow for the presence of an arbitrary concentration of impurities in the
structure. The superconductor induces a gap in the normal metal spectrum that
is proportional to the inverse of the elastic mean free path l_N for rather
clean systems. For a mean free path much shorter than the thickness of the
normal metal, we find a gap size proportional to l_N that approaches the
behavior predicted by the Usadel equation (diffusive limit). We also discuss
the influence of interface and surface roughness, the consequences of a
non-ideal transmittivity of the interface, and the dependence of our results on
the choice of the model of impurity scattering.Comment: 7 pages, 8 figures (included), submitted to PR
Atmospheric aerosols at the Pierre Auger Observatory and environmental implications
The Pierre Auger Observatory detects the highest energy cosmic rays.
Calorimetric measurements of extensive air showers induced by cosmic rays are
performed with a fluorescence detector. Thus, one of the main challenges is the
atmospheric monitoring, especially for aerosols in suspension in the
atmosphere. Several methods are described which have been developed to measure
the aerosol optical depth profile and aerosol phase function, using lasers and
other light sources as recorded by the fluorescence detector. The origin of
atmospheric aerosols traveling through the Auger site is also presented,
highlighting the effect of surrounding areas to atmospheric properties. In the
aim to extend the Pierre Auger Observatory to an atmospheric research platform,
a discussion about a collaborative project is presented.Comment: Regular Article, 16 pages, 12 figure
Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam
Measurements are reported of the yield and spectrum of fluorescence, excited
by a 28.5 GeV electron beam, in air at a range of pressures of interest to
ultra-high energy cosmic ray detectors. The wavelength range was 300 - 420 nm.
System calibration has been performed using Rayleigh scattering of a nitrogen
laser beam. In atmospheric pressure dry air at 304 K the yield is 20.8 +/- 1.6
photons per MeV.Comment: 29 pages, 10 figures. Submitted to Astroparticle Physic
Linguistic expert creation in online health practices
In this chapter, we explore how the construction of an expert identity varies across online e-health settings with different socio-technological features. Our methodology is qualitative in nature and draws on insights from discourse analysis, in particular positioning theory. Results show that four aspects of creating expertise are vital: the embeddedness of the posi-tioning strategies in the online health context, the interplay between these strategies within each setting, the interactivity of the medium, and the fact that not only professionals, but also clients and laypeople construct their expertise. The results reveal that previously found strategies to create expertise (e.g., using jargon or showing empathy) could be confirmed in our corpus, and that the interplay of several strategies is in fact needed to create credible and trustworthy expert identities for all participants involved. This interplay varies accord-ing to the practice
- …