9 research outputs found

    Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N₂O production

    Get PDF
    Better understanding of process controls over nitrous oxide (N₂O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N₂O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH₃) was also calculated accounting for non-linear ammonium (NH₄âș) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO₃⁻) levels than soil L, but was more resistant to nitrite (NO₂⁻) accumulation and produced two to ten times less N₂O than soil L. Genes associated with NO₂⁻oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO₂⁻was strongly correlated with N₂O production, and cumulative (c-) slNH₃ explained 87% of the variance in c-NO₂⁻. Differences between soils were explained by greater slNH₃ in soil L which inhibited NO₂⁻oxidization leading to greater NO₂⁻ levels and N₂O production. This is the first study to correlate the dynamics of soil slNH₃, NO₂⁻, N₂O and nitrifier genes, and the first to show how ASC can regulate NO₂⁻ levels and N₂O production. © 2015 Macmillan Publishers Limited

    Nitrification gene ratio and free ammonia explain nitrite and nitrous oxide production in urea-amended soils

    No full text
    The atmospheric concentration of nitrous oxide (N₂O), a potent greenhouse gas and ozone-depleting chemical, continues to increase, due largely to the application of nitrogen (N) fertilizers. While nitrite (NO₂⁻) is a central regulator of N₂O production in soil, NO₂⁻ and N₂O responses to fertilizer addition rates cannot be readily predicted. Our objective was to determine if quantification of multiple chemical variables and structural genes associated with ammonia (NH₃)- (AOB, encoded by amoA) and NO₂⁻ -oxidizing bacteria (NOB, encoded by nxrA and nxrB) could explain the contrasting responses of eight agricultural soils to five rates of urea addition in aerobic microcosms. Significant differences in NO₂⁻ accumulation and N₂O production by soil type could not be explained by initial soil properties. Biologically-coherent statistical models, however, accounted for 70–89% of the total variance in NO₂⁻ and N₂O. Free NH₃ concentration accounted for 50–85% of the variance in NO₂⁻ which, in turn, explained 62–82% of the variance in N₂O. By itself, the time-integrated nxrA:amoA gene ratio explained 78 and 79% of the variance in cumulative NO₂⁻ and N₂O, respectively. In all soils, nxrA abundances declined above critical urea addition rates, indicating a consistent pattern of suppression of Nitrobacter-associated NOB due to NH₃ toxicity. In contrast, Nitrospira-associated nxrB abundances exhibited a broader range of responses, and showed that long-term management practices (e.g., tillage) can induce a shift in dominant NOB populations which subsequently impacts NO₂⁻ accumulation and N₂O production. These results highlight the challenges of predicting NO₂⁻ and N₂O responses based solely on static soil properties, and suggest that models that account for dynamic processes following N addition are ultimately needed. The relationships found here provide a basis for incorporating the relevant biological and chemical processes into N cycling and N₂O emissions models

    Temperature alters dicyandiamide (DCD) efficacy for multiple reactive nitrogen species in urea-amended soils: Experiments and modeling

    No full text
    Dicyandiamide (DCD) is a nitrification inhibitor (NI) used to reduce reactive nitrogen (N) losses from soils. While commonly used, its effectiveness varies widely. Few studies have measured DCD and temperature effects on a complete set of soil N variables, including nitrite (NO₂¯) measured separately from nitrate (NO₃‟). Here the DCD reduction efficiencies (RE) for nine N availability metrics were quantified in two soils (a loam and silt loam) using aerobic laboratory microcosms at 5–30 °C. Both regression analysis and process modeling were used to characterize the responses. Four metrics accounted for NO₃‟ production and included total mobilized N, net nitrification, maximum nitrification rate, and cumulative NO₃‟ (cNO₃‟). The REs for these NO₃‟ -associated production variables decreased linearly with temperature, and in all cases were below 60% at temperatures ≄22 °C, except for cNO₃‟ in one soil. In contrast, REs for NO₂‟ and nitric oxide (NO) gas production were less sensitive to temperature, ranging from 80 to 99% at 22 °C and 50–95% at 30 °C. Addition of DCD suppressed nitrous oxide (N₂O) production in both soils by 20–80%, but increased ammonia volatilization by 36–210%. The time at which the maximum reduction efficiency occurred decreased exponentially with increasing temperature for most variables. The two-step nitrification process model (2SN) was modified to include competitive inhibition coupled to first-order DCD decomposition. Model versus data comparisons suggested that DCD had indirect effects on NO₂‟ kinetics that contributed to the greater suppression of NO₂‟ and NO relative to NO₃‟. This study also points to the need for NIs that are more stable under increased temperature. The methods used here could help to assess the efficacy and temperature sensitivity of other NIs as well as new microbial inhibitors that may be develope

    Overview and future perspectives of nitrifying bacteria on biofilters for recirculating aquaculture systems

    No full text
    corecore