205 research outputs found

    Dual random fragmentation and coagulation and an application to the genealogy of Yule processes

    Full text link
    The purpose of this work is to describe a duality between a fragmentation associated to certain Dirichlet distributions and a natural random coagulation. The dual fragmentation and coalescent chains arising in this setting appear in the description of the genealogy of Yule processes.Comment: 14 page

    Feller property and infinitesimal generator of the exploration process

    Get PDF
    We consider the exploration process associated to the continuous random tree (CRT) built using a Levy process with no negative jumps. This process has been studied by Duquesne, Le Gall and Le Jan. This measure-valued Markov process is a useful tool to study CRT as well as super-Brownian motion with general branching mechanism. In this paper we prove this process is Feller, and we compute its infinitesimal generator on exponential functionals and give the corresponding martingale

    Stochastic flows associated to coalescent processes. III. Limit theorems

    Full text link
    We prove several limit theorems that relate coalescent processes to continuous-state branching processes. Some of these theorems are stated in terms of the so-called generalized Fleming-Viot processes, which describe the evolution of a population with fixed size, and are duals to the coalescents with multiple collisions studied by Pitman and others. We first discuss asymptotics when the initial size of the population tends to infinity. In that setting, under appropriate hypotheses, we show that a rescaled version of the generalized Fleming-Viot process converges weakly to a continuous-state branching process. As a corollary, we get a hydrodynamic limit for certain sequences of coalescents with multiple collisions: Under an appropriate scaling, the empirical measure associated with sizes of the blocks converges to a (deterministic) limit which solves a generalized form of Smoluchowski's coagulation equation. We also study the behavior in small time of a fixed coalescent with multiple collisions, under a regular variation assumption on the tail of the measure Îœ governing the coalescence events. Precisely, we prove that the number of blocks with size less than Δx at time (ΔΜ([Δ,1]))−1 behaves like Δ−1λ1(]0,x[) as Δ→0, where λ1 is the distribution of the size of one cluster at time 1 in a continuous-state branching process with stable branching mechanism. This generalizes a classical result for the Kingman coalescent

    Explicit formulae in probability and in statistical physics

    Get PDF
    We consider two aspects of Marc Yor's work that have had an impact in statistical physics: firstly, his results on the windings of planar Brownian motion and their implications for the study of polymers; secondly, his theory of exponential functionals of Levy processes and its connections with disordered systems. Particular emphasis is placed on techniques leading to explicit calculations.Comment: 14 pages, 2 figures. To appear in Seminaire de Probabilites, Special Issue Marc Yo

    Self-Similarity for Ballistic Aggregation Equation

    Full text link
    We consider ballistic aggregation equation for gases in which each particle is iden- ti?ed either by its mass and impulsion or by its sole impulsion. For the constant aggregation rate we prove existence of self-similar solutions as well as convergence to the self-similarity for generic solutions. For some classes of mass and/or impulsion dependent rates we are also able to estimate the large time decay of some moments of generic solutions or to build some new classes of self-similar solutions

    Asymptotics of self-similar solutions to coagulation equations with product kernel

    Full text link
    We consider mass-conserving self-similar solutions for Smoluchowski's coagulation equation with kernel K(Ο,η)=(Οη)λK(\xi,\eta)= (\xi \eta)^{\lambda} with λ∈(0,1/2)\lambda \in (0,1/2). It is known that such self-similar solutions g(x)g(x) satisfy that x−1+2λg(x)x^{-1+2\lambda} g(x) is bounded above and below as x→0x \to 0. In this paper we describe in detail via formal asymptotics the qualitative behavior of a suitably rescaled function h(x)=hλx−1+2λg(x)h(x)=h_{\lambda} x^{-1+2\lambda} g(x) in the limit λ→0\lambda \to 0. It turns out that h∌1+Cxλ/2cos⁥(λlog⁥x)h \sim 1+ C x^{\lambda/2} \cos(\sqrt{\lambda} \log x) as x→0x \to 0. As xx becomes larger hh develops peaks of height 1/λ1/\lambda that are separated by large regions where hh is small. Finally, hh converges to zero exponentially fast as x→∞x \to \infty. Our analysis is based on different approximations of a nonlocal operator, that reduces the original equation in certain regimes to a system of ODE

    Convolution-type derivatives, hitting-times of subordinators and time-changed C0C_0-semigroups

    Full text link
    In this paper we will take under consideration subordinators and their inverse processes (hitting-times). We will present in general the governing equations of such processes by means of convolution-type integro-differential operators similar to the fractional derivatives. Furthermore we will discuss the concept of time-changed C0C_0-semigroup in case the time-change is performed by means of the hitting-time of a subordinator. We will show that such time-change give rise to bounded linear operators not preserving the semigroup property and we will present their governing equations by using again integro-differential operators. Such operators are non-local and therefore we will investigate the presence of long-range dependence.Comment: Final version, Potential analysis, 201

    A L\'evy input fluid queue with input and workload regulation

    Full text link
    We consider a queuing model with the workload evolving between consecutive i.i.d.\ exponential timers {eq(i)}i=1,2,...\{e_q^{(i)}\}_{i=1,2,...} according to a spectrally positive L\'evy process Yi(t)Y_i(t) that is reflected at zero, and where the environment ii equals 0 or 1. When the exponential clock eq(i)e_q^{(i)} ends, the workload, as well as the L\'evy input process, are modified; this modification may depend on the current value of the workload, the maximum and the minimum workload observed during the previous cycle, and the environment ii of the L\'evy input process itself during the previous cycle. We analyse the steady-state workload distribution for this model. The main theme of the analysis is the systematic application of non-trivial functionals, derived within the framework of fluctuation theory of L\'evy processes, to workload and queuing models

    Precise Asymptotics for a Random Walker's Maximum

    Full text link
    We consider a discrete time random walk in one dimension. At each time step the walker jumps by a random distance, independent from step to step, drawn from an arbitrary symmetric density function. We show that the expected positive maximum E[M_n] of the walk up to n steps behaves asymptotically for large n as, E[M_n]/\sigma=\sqrt{2n/\pi}+ \gamma +O(n^{-1/2}), where \sigma^2 is the variance of the step lengths. While the leading \sqrt{n} behavior is universal and easy to derive, the leading correction term turns out to be a nontrivial constant \gamma. For the special case of uniform distribution over [-1,1], Coffmann et. al. recently computed \gamma=-0.516068...by exactly enumerating a lengthy double series. Here we present a closed exact formula for \gamma valid for arbitrary symmetric distributions. We also demonstrate how \gamma appears in the thermodynamic limit as the leading behavior of the difference variable E[M_n]-E[|x_n|] where x_n is the position of the walker after n steps. An application of these results to the equilibrium thermodynamics of a Rouse polymer chain is pointed out. We also generalize our results to L\'evy walks.Comment: new references added, typos corrected, published versio

    Random tree growth by vertex splitting

    Full text link
    We study a model of growing planar tree graphs where in each time step we separate the tree into two components by splitting a vertex and then connect the two pieces by inserting a new link between the daughter vertices. This model generalises the preferential attachment model and Ford's α\alpha-model for phylogenetic trees. We develop a mean field theory for the vertex degree distribution, prove that the mean field theory is exact in some special cases and check that it agrees with numerical simulations in general. We calculate various correlation functions and show that the intrinsic Hausdorff dimension can vary from one to infinity, depending on the parameters of the model.Comment: 47 page
    • 

    corecore