8 research outputs found

    Experimental and theoretical soft x-ray study of nicotine and related compounds

    Get PDF
    The valence and core electronic structure of nicotine, nicotinic acid, and nicotinamide have been studied by photoelectron and soft X-ray absorption spectroscopy, supported by theoretical calculations, which take into account conformational isomerism. The core-level photoionization spectra of all molecules have been assigned, and theory indicates that the effects of conformational differences are small, generally less than the natural line widths of the core ionic states. However, in the case of nicotinamide, the theoretical valence ionization potentials of cis and trans conformers differ significantly in the outer valence space, and the experimental spectrum is in agreement with the calculated outer valence cis conformer spectrum. In addition, the C, N, and O K edge near-edge absorption fine structure spectra are reported and interpreted by comparison with reference compounds. We find evidence at the N and O K edges of interaction between the delocalized orbitals of the pyridine ring and the substituents for nicotinic acid and nicotinamide. The strength of the interaction varies because the first is planar, while the second is twisted, reducing the extent of orbital mixing

    An experimental and theoretical investigation of XPS and NEXAFS of nicotine, nicotinamide, and nicotinc acid

    Get PDF
    The electronic structures of nicotine, nicotinic acid and nicotinamide have been studied by valence photoemission spectroscopy (PES), core X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) and interpreted with the aid of quantum chemical calculations. Nicotinamide and nicotinic acid are closely related and show correspondingly similar spectral features, while nicotine is both structurally and spectroscopically diverse
    corecore