2,655 research outputs found

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Using jasmonates and salicylates to reduce losses within the fruit supply chain

    Get PDF
    The fresh produce industry is constantly growing, due to increasing consumer demand. The shelf-life of some fruit, however, is relatively short, limited by microbial contamination or visual, textural and nutritional quality loss. Thus, techniques for reducing undesired microbial contamination, spoilage and decay, as well as maintaining product’s visual, textural and nutritional quality are in high demand at all steps within the supply chain. The postharvest use of signalling molecules, i.e. jasmonates and salicylates seems to have unexplored potential. The focus of this review is on the effects of treatment with jasmonates and salicylates on the fresh produce quality, defined by decay incidence and severity, chilling injury, maintenance of texture, visual quality, taste and aroma, and nutritional content. Postharvest treatments with jasmonates and salicylates have the ability to reduce decay by increasing fruit resistance to diseases and reducing chilling injury in numerous products. These treatments also possess the ability to improve other quality characteristics, i.e. appearance, texture maintenance and nutritional content. Furthermore, they can easily be combined with other treatments, e.g. heat treatment, ultrasound treatment. A good understanding of all the benefits and limitations related to the postharvest use of jasmonates and salicylates is needed, and relevant information has been reviewed in this paper
    corecore