1,035 research outputs found
Superconducting gap anisotropy of LuNi2B2C thin films from microwave surface impedance measurements
Surface impedance measurements of LuNi2B2C superconducting thin films as a
function of temperature have been performed down to 1.5 K and at 20 GHz using a
dielectric resonator technique. The magnetic penetration depth closely
reproduces the standard B.C.S. result, but with a reduced value of the energy
gap at low temperature. These data provide evidence for an anisotropic s-wave
character of the order parameter symmetry in LuNi2B2C. From the evaluation of
the real part of complex conductivity, we have observed constructive (type II)
coherence effects in the electromagnetic absorption below Tc.Comment: 15 pages, 4 figure
Microwave intermodulation distortion of MgB2 thin films
The two tone intermodulation arising in MgB2 thin films deposited in-situ by
planar magnetron sputtering on sapphire substrates is studied. Samples are
characterised using an open-ended dielectric puck resonator operating at 8.8
GHz. The experimental results show that the third order products increase with
the two-tone input power with a slope ranging between 1.5 and 2.3. The
behaviour can be understood introducing a mechanism of vortex penetration in
grain boundaries as the most plausible source of non linearities in these
films. This assumption is confirmed by the analysis of the field dependence of
the surface resistance, that show a linear behaviour at all temperatures under
test.Comment: 13 pages, 3 figures; to be published in Appl. Phys. Let
Consistency of Published Results on the Pathogen Batrachochytrium dendrobatidis in Madagascar: Formal Comment on Kolby et al. Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar
Experimental evidence of s-wave superconductivity in bulk CaC
The temperature dependence of the in-plane magnetic penetration depth,
, has been measured in a c-axis oriented polycrystalline
CaC bulk sample using a high-resolution mutual inductance technique. A
clear exponential behavior of has been observed at low
temperatures, strongly suggesting isotropic s-wave pairing. Data fit using the
standard BCS theory yields Angstroem and
meV. The ratio
gives indication for a conventional weakly coupled superconductor.Comment: To appear in Phys. Rev. Let
Hybrid photonic-bandgap accelerating cavities
In a recent investigation, we studied two-dimensional point-defected photonic
bandgap cavities composed of dielectric rods arranged according to various
representative periodic and aperiodic lattices, with special emphasis on
possible applications to particle acceleration (along the longitudinal axis).
In this paper, we present a new study aimed at highlighting the possible
advantages of using hybrid structures based on the above dielectric
configurations, but featuring metallic rods in the outermost regions, for the
design of extremely-high quality factor, bandgap-based, accelerating
resonators. In this framework, we consider diverse configurations, with
different (periodic and aperiodic) lattice geometries, sizes, and
dielectric/metal fractions. Moreover, we also explore possible improvements
attainable via the use of superconducting plates to confine the electromagnetic
field in the longitudinal direction. Results from our comparative studies,
based on numerical full-wave simulations backed by experimental validations (at
room and cryogenic temperatures) in the microwave region, identify the
candidate parametric configurations capable of yielding the highest quality
factor.Comment: 13 pages, 5 figures, 3 tables. One figure and one reference added;
minor changes in the tex
Elastic Tensor of YNi_2B_2C
The complete elastic tensor of YNi_2B_2C was determined by application of the
resonant ultrasound spectroscopy technique to a single-crystal sample. Elastic
constants were found to be in good agreement with partial results obtained from
`time-of-flight' measurements performed on samples cut from the same ingot.
From the measured constants, the bulk modulus and Debye temperature are
calculated.Comment: 5 pages, 3 figure
Microwave Electrodynamics of Electron-Doped Cuprate Superconductors
We report microwave cavity perturbation measurements of the temperature
dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of
Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate
resonator measurements of lambda(T) in PCCO thin films. Penetration depth
measurements are also presented for a Nd_{2-x}Ce_{x}CuO_{4-delta} (NCCO)
crystal. We find that delta-lambda(T) has a power-law behavior for T<T_c/3, and
conclude that the electron-doped cuprate superconductors have nodes in the
superconducting gap. Furthermore, using the surface impedance, we have derived
the real part of the conductivity, sigma_1(T), below T_c and found a behavior
similar to that observed in hole-doped cuprates.Comment: 4 pages, 4 figures, 1 table. Submitted to Physical Review Letters
revised version: new figures, sample characteristics added to table, general
clarification give
Phase-sensitive Evidence for d-wave Pairing Symmetry in Electron-doped Cuprate Superconductors
We present phase-sensitive evidence that the electron-doped cuprates
Nd1.85Ce0.15CuO4-y (NCCO) and Pr1.85Ce0.15CuO4-y (PCCO) have d-wave pairing
symmetry. This evidence was obtained by observing the half-flux quantum effect,
using a scanning SQUID microscope, in c-axis oriented films of NCCO or PCCO
epitaxially grown on tricrystal [100] SrTiO3 substrates designed to be
frustrated for a d(x2-y2) order parameter. Samples with two other
configurations, designed to b unfrustrated for a d-wave superconductor, do not
show the half-flux quantum effect.Comment: 4 pages, Latex, 4 figure
- …
