1,233 research outputs found

    Dynamics of formation and decay of coherence in a polariton condensate

    Full text link
    We study the dynamics of formation and decay of a condensate of microcavity polaritons. We investigate the relationship between the number of particles, the emission's linewidth and its degree of linear polarization which serves as the order parameter. Tracking the condensate's formation, we show that, even when interactions are negligible, coherence is not determined only by occupation of the ground state. As a result of the competition between the coherent and thermal fractions of the condensate, the highest coherence is obtained some time after the particle number has reached its maximum

    Analysis of the D^+ → K^-π^+e^+ν_e decay channel

    Get PDF
    Using 347.5  fb^(-1) of data recorded by the BABAR detector at the PEP-II electron-positron collider, 244×10^3 signal events for the D^+ → K^-π^+e^+ν_e decay channel are analyzed. This decay mode is dominated by the K̅ ^*(892)^0 contribution. We determine the K̅ ^*(892)^0 parameters: m_(K^*(892)^0)=(895.4±0.2±0.2)  MeV/c^2, Γ_(K^*(892)^0)=(46.5±0.3±0.2)  MeV/c^2, and the Blatt-Weisskopf parameter r_(BW) =2.1±0.5±0.5  (GeV/c)^-1, where the first uncertainty comes from statistics and the second from systematic uncertainties. We also measure the parameters defining the corresponding hadronic form factors at q^2 = 0 (r_V = ^(V(0))/_(A1(0)) = 1.463 ± 0.017 ± 0.031, r_2 = _(A1(0)) ^(A2(0))= 0.801±0.020±0.020) and the value of the axial-vector pole mass parametrizing the q^2 variation of A_1 and A_2: m_A=(2.63±0.10±0.13)  GeV/c^2. The S-wave fraction is equal to (5.79±0.16±0.15)%. Other signal components correspond to fractions below 1%. Using the D^+ → K^-π^+π^+ channel as a normalization, we measure the D^+ semileptonic branching fraction: B(D^+ → K^-π^+e^+ν_e)=(4.00±0.03±0.04±0.09)×10^(-2), where the third uncertainty comes from external inputs. We then obtain the value of the hadronic form factor A_1 at q^2=0: A_1(0)=0.6200±0.0056±0.0065±0.0071. Fixing the P-wave parameters, we measure the phase of the S wave for several values of the Kπ mass. These results confirm those obtained with Kπ production at small momentum transfer in fixed target experiments

    Study of B → πlν and B → ρlν decays and determination of |V_(ub)|

    Get PDF
    We present an analysis of exclusive charmless semileptonic B-meson decays based on 377 × 10^6 BB̅ pairs recorded with the BABAR detector at the Υ(4S) resonance. We select four event samples corresponding to the decay modes B^0 → π^-ℓ^+ν, B^+ → π^0ℓ^+ν, B^0 → ρ^-ℓ^+ν, and B^+ → ρ^0ℓ^+ν and find the measured branching fractions to be consistent with isospin symmetry. Assuming isospin symmetry, we combine the two B → πℓν samples, and similarly the two B → ρℓν samples, and measure the branching fractions B(B^0→π^-ℓ^+ν)=(1.41 ± 0.05 ± 0.07) × 10^(-4) and B(B^0 → ρ^-ℓ^+ν)=(1.75 ± 0.15 ± 0.27) × 10^(-4), where the errors are statistical and systematic. We compare the measured distribution in q^2, the momentum transfer squared, with predictions for the form factors from QCD calculations and determine the Cabibbo-Kobayashi-Maskawa matrix element |V_(ub)|. Based on the measured partial branching fraction for B → πℓν in the range q^2 < 12  GeV^2 and the most recent QCD light-cone sum-rule calculations, we obtain |V_(ub)|=(3.78 ± 0.13^(+0.55)_(-0.40)) × 10^(-3), where the errors refer to the experimental and theoretical uncertainties. From a simultaneous fit to the data over the full q^2 range and the FNAL/MILC lattice QCD results, we obtain |V_(ub)|=(2.95 ± 0.31) × 10^(-3) from B → πℓν, where the error is the combined experimental and theoretical uncertainty

    Observation of η_c(1S) and η_c(2S) decays to K^+K^-π^+π^-π^0 in two-photon interactions

    Get PDF
    We study the processes γγ→K_S^0K^±π^∓ and γγ→K^+K^-π^+π-π^0 using a data sample of 519.2fb^(-1) recorded by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at center-of-mass energies near the Υ(nS) (n=2, 3, 4) resonances. We observe the η_c(1S), χ_(c0)(1P) and η_c(2S) resonances produced in two-photon interactions and decaying to K^+K^-π^+π^-π^0, with significances of 18.1, 5.4 and 5.3 standard deviations (including systematic errors), respectively, and report 4.0σ evidence of the χ_(c2)(1P) decay to this final state. We measure the η_c(2S) mass and width in K_S^0K^±π^∓ decays, and obtain the values m(η_c(2S))=3638.5±1.5±0.8  MeV/c^2 and Γ(η_c(2S))=13.4±4.6±3.2  MeV, where the first uncertainty is statistical and the second is systematic. We measure the two-photon width times branching fraction for the reported resonance signals, and search for the χ_(c2)(2P) resonance, but no significant signal is observed

    Evidence for the decay X(3872)→J/ψω

    Get PDF
    We present a study of the decays B^(0,+)→J/ψπ^+π^-π^0K^(0,+), using 467×10^6 BB[overbar] pairs recorded with the BABAR detector. We present evidence for the decay mode X(3872)→J/ψω, with product branching fractions B(B^+→X(3872)K^+)×B(X(3872)→J/ψω)=[0.6±0.2(stat)±0.1(syst)]×10^(-5), and B(B^0→X(3872)K^0)×B(X(3872)→J/ψω)=[0.6±0.3(stat)±0.1(syst)]×10^(-5). A detailed study of the π^+π^-π^0 mass distribution from X(3872) decay favors a negative-parity assignment

    Study of B → Xγ decays and determination of |V_(td)/V_(ts)|

    Get PDF
    Using a sample of 471×10^6 BB̅[overbar] events collected with the BABAR detector, we study the sum of seven exclusive final states B→X_(s(d))γ, where X_(s(d)) is a strange (nonstrange) hadronic system with a mass of up to 2.0  GeV/c^2. After correcting for unobserved decay modes, we obtain a branching fraction for b→dγ of (9.2±2.0(stat)±2.3(syst))×10^(-6) in this mass range, and a branching fraction for b→sγ of (23.0±0.8(stat)±3.0(syst))×10^(-5) in the same mass range. We find B[script](b→dγ)/B[script](b→sγ)=0.040±0.009(stat)±0.010(syst), from which we determine |V_(td)/V_(ts)|=0.199±0.022(stat)±0.024(syst)±0.002(th)

    Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in B^+ → ρ^0K^(*+) and B^+ → f_0 (980)K^(*+) decays

    Get PDF
    We present measurements of the branching fractions, longitudinal polarization, and direct CP-violation asymmetries for the decays B^+→ρ^0K^(*+) and B^+→f_0(980)K^(*+) with a sample of (467±5)×10^6BB̅ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e+e- collider at the SLAC National Accelerator Laboratory. We observe B+→ρ0K*+ with a significance of 5.3σ and measure the branching fraction B(B^+→ρ^0K^(*+))=(4.6±1.0±0.4)×10^(-6), the longitudinal polarization f_L=0.78±0.12±0.03, and the CP-violation asymmetry A_(CP)=0.31±0.13±0.03. We observe B^+→f_0(980)K^(*+) and measure the branching fraction B(B^+→f_0(980)K^(*+))×B(f_0(980)→π^+π^-)=(4.2±0.6±0.3)×10^(-6) and the CP-violation asymmetry A_(CP)=-0.15±0.12±0.03. The first uncertainty quoted is statistical and the second is systematic

    Measurement of CP observables in B^± → D_(CP)K^± decays and constraints on the CKM angle γ

    Get PDF
    Using the entire sample of 467×10^6 Υ(4S)→BB[overbar] decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the SLAC National Accelerator Laboratory, we perform an analysis of B^± → DK^± decays, using decay modes in which the neutral D meson decays to either CP-eigenstates or non-CP-eigenstates. We measure the partial decay rate charge asymmetries for CP-even and CP-odd D final states to be A_(CP+) = 0.25±0.06±0.02 and A_(CP-) = -0.09±0.07±0.02, respectively, where the first error is the statistical and the second is the systematic uncertainty. The parameter A_(CP+) is different from zero with a significance of 3.6 standard deviations, constituting evidence for direct CP violation. We also measure the ratios of the charged-averaged B partial decay rates in CP and non-CP decays, R_(CP+) = 1.18±0.09±0.05 and R_(CP-) = 1.07±0.08±0.04. We infer frequentist confidence intervals for the angle γ of the unitarity triangle, for the strong phase difference δ_B, and for the amplitude ratio r_B, which are related to the B^- → DK^- decay amplitude by r_(B)e^(i(δB-γ)) = A(B^- → D[overbar]^(0)K^-)/A(B^- → D^(0)K^-). Including statistical and systematic uncertainties, we obtain 0.24 < r_B < 0.45 (0.06 < r_B <0.51) and, modulo 180°, 11.3° < γ < 22.7° or 80.8° < γ <99.2° or 157.3° <γ < 168.7° (7.0°<γ<173.0°) at the 68% (95%) confidence level
    corecore