1,116 research outputs found
Neural network interpolation of the magnetic field for the LISA Pathfinder Diagnostics Subsystem
LISA Pathfinder is a science and technology demonstrator of the European
Space Agency within the framework of its LISA mission, which aims to be the
first space-borne gravitational wave observatory. The payload of LISA
Pathfinder is the so-called LISA Technology Package, which is designed to
measure relative accelerations between two test masses in nominal free fall.
Its disturbances are monitored and dealt by the diagnostics subsystem. This
subsystem consists of several modules, and one of these is the magnetic
diagnostics system, which includes a set of four tri-axial fluxgate
magnetometers, intended to measure with high precision the magnetic field at
the positions of the test masses. However, since the magnetometers are located
far from the positions of the test masses, the magnetic field at their
positions must be interpolated. It has been recently shown that because there
are not enough magnetic channels, classical interpolation methods fail to
derive reliable measurements at the positions of the test masses, while neural
network interpolation can provide the required measurements at the desired
accuracy. In this paper we expand these studies and we assess the reliability
and robustness of the neural network interpolation scheme for variations of the
locations and possible offsets of the magnetometers, as well as for changes in
environmental conditions. We find that neural networks are robust enough to
derive accurate measurements of the magnetic field at the positions of the test
masses in most circumstances
Observations on the water distribution and extractable sugar content in carrot slices after pulsed electric field treatment
peer-reviewedThe impact of pulsed electric field (PEF) processing conditions on the distribution of water in carrot tissue and extractability of soluble sugars from carrot slices was studied. Time domain NMR relaxometry was used to investigate the water proton mobility in PEF-treated carrot samples. Three distinct transverse relaxation peaks were observed in untreated carrots. After PEF treatment only two slightly-overlapping peaks were found; these were attributed to water present in the cytoplasm and vacuole of carrot xylem and phloem tissues. This post-treatment observation indicated an increase in water permeability of tissues and/or a loss of integrity in the tonoplast. In general, the stronger the electric field applied, the lower the area representing transverse relaxation (T2) values irrespective of treatment duration. Moreover an increase in sucrose, β- and α-glucose and fructose concentrations of carrot slice extracts after PEF treatment suggested increases in both cell wall and vacuole permeability as a result of exposure to pulsed electric fields.The authors acknowledge financial support from the Irish Phytochemical Food Network (IPFN) project funded under the Food Institutional Research Measure (FIRM, 06/TNI/AFRC6) of the Irish Department of Agriculture, Food and Marine. Dr. Aguiló-Aguayo thanks Generalitat of Catalonia for the postdoctoral grant Beatriu de Pinós (BP-DGR2010). E. Balagueró thanks the Lifelong Learning Programme for the internship grant Leonardo da Vinci MOTIVA3 (201 1-1-ES1-LEO02-34225)
Hyperfine structure and homogeneous broadening in Pr3+: KY(WO4)(2)
As part of a search for suitable materials for coherent quantum operations, relaxation times and hyperfine structure of the D-1(2)(1)-H-3(4)(1) transition in Pr3+:KY(WO4)(2) (0.29 at. %) at 4 K have been obtained using photon-echo and spectral hole burning techniques. The homogeneous linewidth and the effect of excitation-induced dephasing were measured using two-pulse photon-echo techniques. Linewidths of 23.4+/-1.0 and 17.6+/-0.9 kHz were obtained in the absence and presence of an external magnetic field of about 9 mT. The radiative lifetime (T-1) of the D-1(2) state was measured to be 43+/-2 mus using time-resolved laser-induced fluorescence and three-pulse photon-echo measurements. The transmission hole spectra were measured and directly yielded the quadrupole level splitting in the D-1(2) (3.77+/-0.03 and 4.58+/-0.04 MHz) and H-3(4) (17.1+/-0.1 and 33.2+/-0.3 MHz) states. The spectral hole lifetime due to population redistribution between the ground-state nuclear levels was also determined to be 70+/-10 ms. A strong dipole-dipole interaction observed in this crystal opens for potential applications in quantum computing schemes for performing quantum logic operations, but the short dephasing time makes it less useful in data storage applications
Ultraviolet and visible emissions of Er3+ in KY(WO4)2 single crystals co-doped with Yb 3+ ions
Abstract In this paper we studied the luminescence of Er 3+ in KY(WO 4 ) 2 co-doped with Yb 3+ at room temperature and at cryogenic temperature in the 360-860 nm range. We found 13 emissions of erbium in the ultraviolet and visible range, and studied the emissions after two pump wavelengths, one at 981 nm resonant to the maximum absorption of ytterbium and one at 798 nm resonant to the 4 I 9/2 energy level of erbium.
Facial onset sensory and motor neuronopathy: new cases, cognitive changes and pathophysiology
Purpose of review To improve our clinical understanding of facial onset sensory and motor neuronopathy (FOSMN).
Recent findings We identified 29 new cases and 71 literature cases, resulting in a cohort of 100 patients with FOSMN. During follow-up, cognitive and behavioral changes became apparent in 8 patients, suggesting that changes within the spectrum of frontotemporal dementia (FTD) are a part of the natural history of FOSMN. Another new finding was chorea, seen in 6 cases. Despite reports of autoantibodies, there is no consistent evidence to suggest an autoimmune pathogenesis. Four of 6 autopsies had TAR DNA-binding protein (TDP) 43 pathology. Seven cases had genetic mutations associated with neurodegenerative diseases.
Summary FOSMN is a rare disease with a highly characteristic onset and pattern of disease progression involving initial sensory disturbances, followed by bulbar weakness with a cranial to caudal spread of pathology. Although not conclusive, the balance of evidence suggests that FOSMN is most likely to be a TDP-43 proteinopathy within the amyotrophic lateral sclerosis–FTD spectrum
Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial.
BACKGROUND: Tuberculosis remains one of the world's deadliest transmissible diseases despite widespread use of the BCG vaccine. MTBVAC is a new live tuberculosis vaccine based on genetically attenuated Mycobacterium tuberculosis that expresses most antigens present in human isolates of M tuberculosis. We aimed to compare the safety of MTBVAC with BCG in healthy adult volunteers.
METHODS: We did this single-centre, randomised, double-blind, controlled phase 1 study at the Centre Hospitalier Universitaire Vaudois (CHUV; Lausanne, Switzerland). Volunteers were eligible for inclusion if they were aged 18-45 years, clinically healthy, HIV-negative and tuberculosis-negative, and had no history of active tuberculosis, chemoprophylaxis for tuberculosis, or BCG vaccination. Volunteers fulfilling the inclusion criteria were randomly assigned to three cohorts in a dose-escalation manner. Randomisation was done centrally by the CHUV Pharmacy and treatments were masked from the study team and volunteers. As participants were recruited within each cohort, they were randomly assigned 3:1 to receive MTBVAC or BCG. Of the participants allocated MTBVAC, those in the first cohort received 5 × 10(3) colony forming units (CFU) MTBVAC, those in the second cohort received 5 × 10(4) CFU MTBVAC, and those in the third cohort received 5 × 10(5) CFU MTBVAC. In all cohorts, participants assigned to receive BCG were given 5 × 10(5) CFU BCG. Each participant received a single intradermal injection of their assigned vaccine in 0·1 mL sterile water in their non-dominant arm. The primary outcome was safety in all vaccinated participants. Secondary outcomes included whole blood cell-mediated immune response to live MTBVAC and BCG, and interferon γ release assays (IGRA) of peripheral blood mononuclear cells. This trial is registered with ClinicalTrials.gov, number NCT02013245.
FINDINGS: Between Jan 23, 2013, and Nov 6, 2013, we enrolled 36 volunteers into three cohorts, each of which consisted of nine participants who received MTBVAC and three who received BCG. 34 volunteers completed the trial. The safety of vaccination with MTBVAC at all doses was similar to that of BCG, and vaccination did not induce any serious adverse events. All individuals were IGRA negative at the end of follow-up (day 210). After whole blood stimulation with live MTBVAC or BCG, MTBVAC was at least as immunogenic as BCG. At the same dose as BCG (5×10(5) CFU), although no statistical significance could be achieved, there were more responders in the MTBVAC group than in the BCG group, with a greater frequency of polyfunctional CD4+ central memory T cells.
INTERPRETATION: To our knowledge, MTBVAC is the first live-attenuated M tuberculosis vaccine to reach clinical assessment, showing similar safety to BCG. MTBVAC seemed to be at least as immunogenic as BCG, but the study was not powered to investigate this outcome. Further plans to use more immunogenicity endpoints in a larger number of volunteers (adults and adolescents) are underway, with the aim to thoroughly characterise and potentially distinguish immunogenicity between MTBVAC and BCG in tuberculosis-endemic countries. Combined with an excellent safety profile, these data support advanced clinical development in high-burden tuberculosis endemic countries.
FUNDING: Biofabri and Bill & Melinda Gates Foundation through the TuBerculosis Vaccine Initiative (TBVI)
Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber
We report on the first Tm-doped double tungstate microchip laser Q-switched with graphene using a Tm:KLu(WO4)2 crystal cut along the Ng dielectric axis. This laser generates a maximum average output power of 310 mW with a slope efficiency of 13%. At a repetition rate of 190 kHz the shortest pulses with 285 ns duration and 1.6 μJ energy are achieved
State space modelling and data analysis exercises in LISA Pathfinder
LISA Pathfinder is a mission planned by the European Space Agency to test the
key technologies that will allow the detection of gravitational waves in space.
The instrument on-board, the LISA Technology package, will undergo an
exhaustive campaign of calibrations and noise characterisation campaigns in
order to fully describe the noise model. Data analysis plays an important role
in the mission and for that reason the data analysis team has been developing a
toolbox which contains all the functionalities required during operations. In
this contribution we give an overview of recent activities, focusing on the
improvements in the modelling of the instrument and in the data analysis
campaigns performed both with real and simulated data.Comment: Plenary talk presented at the 9th International LISA Symposium, 21-25
May 2012, Pari
Recommended from our members
Search for physics beyond the standard model in events with τ leptons, jets, and large transverse momentum imbalance in pp collisions at [Formula: see text].
A search for physics beyond the standard model is performed with events having one or more hadronically decaying τ leptons, highly energetic jets, and large transverse momentum imbalance. The data sample corresponds to an integrated luminosity of 4.98 fb-1 of proton-proton collisions at [Formula: see text] collected with the CMS detector at the LHC in 2011. The number of observed events is consistent with predictions for standard model processes. Lower limits on the mass of the gluino in supersymmetric models are determined
- …