47 research outputs found

    Optical image encryption based on chaotic baker map and double random phase encoding

    Get PDF
    This paper presents a new technique for optical image encryption based on chaotic Baker map and Double Random Phase Encoding (DRPE). This technique is implemented in two layers to enhance the security level of the classical DRPE. The first layer is a pre-processing layer, which is performed with the chaotic Baker map on the original image. In the second layer, the classical DRPE is utilized. Matlab simulation experiments show that the proposed technique enhances the security level of the DRPE, and at the same time has a better immunity to noise

    Subcarrier Gain Based Power Allocation in Multicarrier Systems

    No full text
    The Orthogonal Frequency Division Multiplexing (OFDM) transmission is the optimum version of the multicarrier transmission scheme, which has the capability to achieve high data rate. The key issue of OFDMsystem is the allocation of bits and power over a number of subcarriers. In this paper, a new power allocation algorithm based on subcarrier gain is proposed to maximize the bit rate. For OFDM systems, the Subcarrier Gain Based Power Allocation (SGPA) algorithm is addressed and compared with the standard Greedy Power Allocation (GPA). The authors demonstrate by analysis and simulation that the proposed algorithm reduces the computational complexity and achieves a near optimal performance in maximizing the bit rate over a number of subcarrier

    A Hybrid Compressive Sensing and Classification Approach for Dynamic Storage Management of Vital Biomedical Signals

    No full text
    The efficient compression and classification of medical signals, particularly electroencephalography (EEG) and electrocardiography (ECG) signals in wireless body area network (WBAN) systems, are crucial for real-time monitoring and diagnosis. This paper addresses the challenges of compressive sensing and classification in WBAN systems for EEG and ECG signals. To tackle the challenges of the compression process, a sequential approach is proposed. The first step involves compressing the EEG and ECG signals using the optimized Walsh-Hadamard transform (OWHT). This transform allows for efficient representation of the signals, while preserving their essential characteristics. However, the presence of noise can impact the quality of the compressed signals. To mitigate this effect, the signals are subsequently recovered using the Sparse Group Lasso 1 (SPGL1) algorithm and OWHT, which take into account the noise characteristics during the recovery process. To evaluate the performance of the proposed compressive sensing algorithm, two metrics are employed: mean squared error (MSE) and maximum correntropy criterion (MCC). These metrics provide insights into the accuracy and reliability of the recovered signals at different signal-to-sample ratios (SSRs). The results of the evaluation demonstrate the effectiveness of the proposed algorithm in accurately reconstructing the EEG and ECG signals, while effectively managing the noise interference. Furthermore, to enhance the classification accuracy in the presence of signal compression, a local binary pattern (LBP) tehnique is applied. This technique extracts discriminative features from the compressed signals. These features are then fed into a classification algorithm based on residual learning. This classification algorithm is trained from scratch and specifically designed to work with the compressed signals. The experimental results showcase the high accuracy achieved by the proposed approach in classifying the compressed EEG and ECG signals without the need for signal recovery. The findings of this study highlight the potential of the proposed approach in achieving efficient and accurate medical signal analysis in WBAN systems. By eliminating the computational burden of signal recovery and leveraging the advantages of compressive sensing, the proposed approach offers a promising solution for real-time monitoring and diagnosis, ultimately improving the overall efficiency and effectiveness of healthcare systems

    Low Complexity Greedy Power Allocation Algorithm for Proportional Resource Allocation in Multi-User OFDM Systems

    No full text
    Multi-User Orthogonal Frequency Division Multiplexing (MU-OFDM) is an efficient technique for achieving high downlink capacity in high-speed communication systems. A key issue in MU-OFDM is the allocation of the OFDM subcarriers and power to users sharing the channel. In this paper a proportional rate-adaptive resource allocation algorithm for MU-OFDM is presented. Subcarrier and power allocation are carried out sequentially to reduce the complexity. The low complexity proportional subcarriers allocation is followed by Greedy Power Allocation (GPA) to solve the rate-adaptive resource allocation problem with proportional rate constraints for MU-OFDM systems. It improves the work of Wong et al. in this area by introducing an optimal GPA that achieves approximate rate proportionality, while maximizing the total sum-rate capacity of MU-OFDM. It is shown through simulation that the proposed GPA algorithm performs better than the algorithm of Wong et al., by achieving higher total capacities with the same computational complexity, especially, at larger number of users and roughly satisfying user rate proportionality
    corecore